Simplify the following: a
2
(b2 – c
2
) + b2
(c2 – a
2
) + c2
(a2 – b
2
)
Answers
Step-by-step explanation:
Now,
- Hint: Let us multiply the terms using the algebraic operation:
- or,
- Hint: Now, we rewrite the terms using commutative property of multiplication:
- Hint: We rearrange the terms.
- Hint: Since the difference of similar terms is , we write:
Answer:
Step-by-step explanation:
Now, a^{2}(b^{2}-c^{2})+b^{2}(c^{2}-a^{2})+c^{2}(a^{2}-b^{2})a
2
(b
2
−c
2
)+b
2
(c
2
−a
2
)+c
2
(a
2
−b
2
)
Hint: Let us multiply the terms using the algebraic operation:
\quad a(b+c)=ab+aca(b+c)=ab+ac
or, a(b-c)=ab-aca(b−c)=ab−ac
=a^{2}b^{2}-a^{2}c^{2}+b^{2}c^{2}-b^{2}a^{2}+c^{2}a^{2}-c^{2}b^{2}=a
2
b
2
−a
2
c
2
+b
2
c
2
−b
2
a
2
+c
2
a
2
−c
2
b
2
Hint: Now, we rewrite the terms using commutative property of multiplication:
\quad ab=baab=ba
=a^{2}b^{2}-c^{2}a^{2}+b^{2}c^{2}-a^{2}b^{2}+c^{2}a^{2}-b^{2}c^{2}=a
2
b
2
−c
2
a
2
+b
2
c
2
−a
2
b
2
+c
2
a
2
−b
2
c
2
Hint: We rearrange the terms.
=a^{2}b^{2}-a^{2}b^{2}+b^{2}c^{2}-b^{2}c^{2}+c^{2}a^{2}-c^{2}a^{2}=a
2
b
2
−a
2
b
2
+b
2
c
2
−b
2
c
2
+c
2
a
2
−c
2
a
2
Hint: Since the difference of similar terms is 00 , we write:
\quad a^{2}b^{2}-a^{2}b^{2}=0a
2
b
2
−a
2
b
2
=0
=0+0+0=0+0+0
=\bold{0}=0