Simplify the following algebraic expression: (only for brilliant)
1. (2m + 1) (m-2) - (3n - 1) (n+3) - [4 (m - 2n) + {1 - n² + 2 (m+n) (m-n)}]
please give only correct answer. I will mark u as branliest.
spammers stay away!!!!
Answers
Given :
(2m + 1) (m-2) - (3n - 1) (n+3) - [4 (m - 2n) + {1 - n² + 2 (m+n) (m-n)}]
Solving (2m + 1) (m - 2)
Solving (3n - 1) (n + 3)
Solving [4 (m - 2n) + {1 - n² + 2 (m+n) (m-n)}]
→ 4m - 8n + [ 3 - n² (m + n) (m - n) ]
We know (a + b) (a - b) = a² - b²
→ 4m - 8n + [ 3 - n² (m² - n²) ]
→ 4m - 8n + [ 3 (m² - n)² - n² (m² - n²)
→ 4m - 8n + [ 3m² - n² - n²m² - 2n²]
→ 4m - 8n + 3m² - 3n² - n²m²
Now,
We have,
(2m + 1) (m-2) = 2m² - 3m - 2
(3n - 1) (n+3) = 3n² - 7n - 3
[4 (m - 2n) + {1 - n² + 2 (m+n) (m-n)}] = 4m - 8n + 3m² - 3n² - n²m²
Putting all values
Solving (2m + 1) (m-2) - (3n - 1) (n+3)
Solving
2m² - 3m - 3n² - 7n - 5 -( 4m - 8n + 3m² - 3n² - n²m² )
Final answer : - m² - 7m + n - n²m² - 5
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Question :
- To Simplify : (2m + 1) (m-2) - (3n - 1) (n+3) - [4 (m - 2n) + {1 - n² + 2 (m+n) (m-n)}]
Solution :
➠ (2m + 1) (m-2) - (3n - 1) (n+3) - [4 (m - 2n) + {1 - n² + 2 (m+n) (m-n)}]
✠ Open the brackets by multiplying
➠ 2m(m-2) +1(m-2) -3n(n+3) -1(n+3) -[ 4m -8n + 1-n²+2(m+n)(m-n)]
➠ 2m²-4m + m - 2 -3n²+9n -n -3n -[4m -8n + 1-n²+2(m²-n²)]
➠ 2m²-4m + m - 2 -3n²+9n -n -3n -[4m -8n + 1-n²+ 2m²-2n²]
➠ 2m²-4m + m - 2 -3n²+9n -n -3n -4m +8n -1 +n² -2m² +2n²
✠ Adding like terms :
➠ 2m² −4m+m−2−3n² −8n+3+−4m+8n −1+n²+−2m²+2n²
➠ 2m² −2m² +(−3n² +n²+2n²)+(−4m+m+−4m)+(−8n+8n)+(−2+3−1)
➠ -7m
Therefore ,
(2m + 1) (m-2) - (3n - 1) (n+3) - [4 (m - 2n) + {1 - n² + 2 (m+n) (m-n)}] = -7m