Math, asked by prasadlakhmi5, 7 days ago

Simplify the following


AND GIVE THE CORRECT ANSWER OR ELSE , REPORTED


IF THE ANSWER IS 8 , IT'S CORRECT

CORRECT ANSWER WILL BE MARKED AS BRAINLIEST​

Attachments:

Answers

Answered by BrainlyPhantom
23

Given Question:

\sf{\dfrac{\sqrt5+\sqrt3}{\sqrt5-\sqrt3}+\dfrac{\sqrt5-\sqrt3}{\sqrt5+\sqrt3}}

Solution:

To simplify, rationalize the denominators of both the fractions by multiplying both the numerator and denominator with the radical of the denominator:

\sf{\longrightarrow\bigg(\dfrac{\sqrt5+\sqrt3}{\sqrt5-\sqrt3}\times\dfrac{\sqrt5+\sqrt3}{\sqrt5+\sqrt3}\bigg)+\bigg(\dfrac{\sqrt5-\sqrt3}{\sqrt5+\sqrt3}\times\dfrac{\sqrt5-\sqrt3}{\sqrt5-\sqrt3}\bigg)}

Simplifying further:

\sf{\longrightarrow\dfrac{(\sqrt5+\sqrt3)^2}{5-3}+\dfrac{(\sqrt5-\sqrt3)^2}{5-3}}

\sf{\longrightarrow\dfrac{5+3+2\sqrt15}{2}+\dfrac{5+3-2\sqrt15}{2}}

The + and - 2√15 gets cancelled and we are left with:

\sf{\longrightarrow\dfrac{5+3}{2}+\dfrac{5+3}{2}}

\sf{\longrightarrow\dfrac{8}{2}+\dfrac{8}{2}}

\sf{\longrightarrow\dfrac{16}{2}}

\bf{\longrightarrow\:8}

Therefore the simplified form of the given expression is 8.

Answered by SparklingThunder
9

 \tt \purple{ \diamonds \: Given : }

 \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} -  \sqrt{3}  }  +  \frac{ \sqrt{5}  -  \sqrt{3}  }{ \sqrt{5}  +   \sqrt{3}  }

 \tt \purple{ \diamonds \: To \:  find : }

To simplify.

 \tt \purple{ \diamonds \: Formulas \:  used :}

  \tt{(a +b) }^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\ \tt{(a  - b) }^{2}  =  {a}^{2}  +  {b}^{2}   -  2ab \\  \tt(a - b)(a + b) =  {a}^{2}  -  {b}^{2}

 \tt \purple{ \diamonds \:Solution : }

 \implies \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} -  \sqrt{3}  }  +  \frac{ \sqrt{5}  -  \sqrt{3}  }{ \sqrt{5}  +   \sqrt{3}  }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \small\implies \frac{( \sqrt{5} +  \sqrt{3})( \sqrt{5} +  \sqrt{3}) + ( \sqrt{5}  -  \sqrt{3})( \sqrt{5} -  \sqrt{3}   )    }{( \sqrt{5} -  \sqrt{3})( \sqrt{5} +  \sqrt{3})     }  \\  \implies \:  \frac{ {( \sqrt{5} +  \sqrt{3})}^{2}  +  {( \sqrt{5} -  \sqrt{3})  }^{2}   }{( \sqrt{5} -  \sqrt{3})( \sqrt{5} +  \sqrt{3}) }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ \tt \: By \:  applying  \: all \:  formulas  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\   \implies \:  \frac{5 + 3 +  \cancel{2 \sqrt{15}} + 5 + 3 -  \cancel{2 \sqrt{15}}  }{5 - 3}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \implies \frac{ \cancel{16}}{ \cancel{2}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\   \implies \boxed{8 }\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:    \:  \:  \:  \:  \:

Similar questions