Math, asked by harsinid2007, 4 months ago

Simplify the following and write in exponential form. 1/27×3^-3​

Answers

Answered by pulakmath007
8

\displaystyle \sf{  \frac{1}{27} \times  {3}^{ - 3}    } =  {3}^{ - 6}

Given :

The expression

\displaystyle \sf{  \frac{1}{27} \times  {3}^{ - 3}    }

To find :

  • Simplify the given expression

  • Write in exponential form

Solution :

Step 1 of 3 :

Write down the given expression

The given expression is

\displaystyle \sf{  \frac{1}{27} \times  {3}^{ - 3}    }

Step 2 of 3 :

Simplify the given expression

\displaystyle \sf{  \frac{1}{27} \times  {3}^{ - 3}    }

\displaystyle \sf{  =  \frac{1}{27} \times   \frac{1}{{3}^{ 3} }    }

\displaystyle \sf{  =  \frac{1}{ {3}^{3} } \times   \frac{1}{{3}^{ 3} }    }

\displaystyle \sf{  =  \frac{1}{ {3}^{3} \times  {3}^{3}} }

\displaystyle \sf{  =  \frac{1}{ {3}^{3 + 3}}}

\displaystyle \sf{  =  \frac{1}{ {3}^{6}}}

Step 3 of 3 :

Write in exponential form

\displaystyle \sf{  \frac{1}{27} \times  {3}^{ - 3}    }

\displaystyle \sf{  =  \frac{1}{ {3}^{6}}}

\displaystyle \sf{  =   {3}^{ - 6}}

 \boxed{ \:  \: \displaystyle \sf{  \frac{1}{27} \times  {3}^{ - 3}    } =  {3}^{ - 6}  \:  \: }

Similar questions