Math, asked by sreeraaga2506, 7 months ago

Simplify the following by rationalising the denominator.
Plz answer this question plz plz. ​

Attachments:

Answers

Answered by dipakshi114
1

Answer:

1/3√2 - 2√3

By rationalising...

1/3√2-2√3 * 3√2+2√3/ 3√2+2√3

(a+b) (a-b) = a^2 - b^2

3√2-2√3/14. is the ans for first ques..

srry idk how to solve the sec one!

Answered by MaIeficent
7

Step-by-step explanation:

Question:-

Solve the following by rationalizing the denominator:-

\sf(i) \:  \dfrac{1}{3 \sqrt{2}  - 2 \sqrt{3} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (ii) \:  \dfrac{3 \sqrt{5} -  \sqrt{7}  }{3 \sqrt{3} +  \sqrt{2}  }

Solution:-

 \sf(i) \: \: \dfrac{1}{3 \sqrt{2}  - 2 \sqrt{3} }

By rationalizing the denominator:-

\sf = \dfrac{1}{3 \sqrt{2} - 2 \sqrt{3}  }  \times   \dfrac{3 \sqrt{2}  + 2\sqrt{3} }{3 \sqrt{2}   +  2 \sqrt{3}}

\sf =  \dfrac{3 \sqrt{2}  + 2\sqrt{3} }{(3 \sqrt{2})^{2}  - (2 \sqrt{3})^{2}   }

\sf =  \dfrac{3 \sqrt{2}  + 2\sqrt{3} }{  }

\sf =  \dfrac{3 \sqrt{2}  + 2\sqrt{3} }{6 }

\underline{\boxed{\bf \leadsto \dfrac{3 \sqrt{2}  + 2\sqrt{3} }{6 }}}

________________________

 (ii) \:  \dfrac{3 \sqrt{5} -  \sqrt{7}  }{3 \sqrt{3} +  \sqrt{2}  }

By rationalizing the denominator:-

  \sf =  \dfrac{3 \sqrt{5} -  \sqrt{7}  }{3 \sqrt{3} +  \sqrt{2}  } \times  \dfrac{3 \sqrt{3} -  \sqrt{2}  }{3 \sqrt{3}  -  \sqrt{2} }

  \sf  =   \dfrac{3 \sqrt{5}( 3 \sqrt{3} -  \sqrt{2}) -  \sqrt{7}(3 \sqrt{3}   -  \sqrt{2})   }{(3 \sqrt{3}  -  \sqrt{2} )(3 \sqrt{3} +  \sqrt{2})  }

  \sf  =   \dfrac{3 \sqrt{5}( 3 \sqrt{3}) -  3 \sqrt{5} (\sqrt{2}) -  \sqrt{7}(3 \sqrt{3} )  -   \sqrt{7}( \sqrt{2})   }{(3 \sqrt{3})^{2}   -  (\sqrt{2} )^{2} }

  \sf  =   \dfrac{9 \sqrt{15}-  3 \sqrt{10}  -  3 \sqrt{21}  -   \sqrt{14}   }{27  - 2 }

  \sf  =   \dfrac{9 \sqrt{15}-  3 \sqrt{10}  -  3 \sqrt{21}  -   \sqrt{14}   }{25 }

\underline{\boxed{\bf \leadsto  \dfrac{9 \sqrt{15}-  3 \sqrt{10}  -  3 \sqrt{21}  -   \sqrt{14}   }{25 }  }}

Similar questions