Math, asked by bhandaridewan3, 17 days ago

simplify the following expression cosec theta ( 1+ cos theta ) ( cosec theta - cot theta )​

Answers

Answered by sunehas690
6

Answer:

it is right answer hope it is hopeful for u

Attachments:
Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:cosec\theta (1 + cos\theta )(cosec\theta  - cot\theta )

We know,

 \boxed{ \bf{ \: cosecx =  \frac{1}{sinx}}}

and

 \boxed{ \bf{ \: cotx =  \frac{cosx}{sinx}}}

So, using these Identities, we get

\rm \:  =  \:\dfrac{1}{sin\theta}(1 + cos\theta )\bigg[\dfrac{1}{sin\theta }  - \dfrac{cos\theta }{sin\theta } \bigg]

\rm \:  =  \:\dfrac{1}{sin\theta}(1 + cos\theta )\bigg[\dfrac{1 - cos\theta }{sin\theta } \bigg]

\rm \:  =  \:\dfrac{1}{sin\theta}\bigg[\dfrac{(1 + cos\theta )(1 - cos\theta)}{sin\theta } \bigg]

We know,

 \boxed{ \bf{ \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}}}

\rm \:  =  \:\dfrac{1 -  {cos}^{2}\theta }{ {sin}^{2}\theta }

We know,

 \boxed{ \bf{ \:  {sin}^{2}x +  {cos}^{2}x = 1}}

So, using this,

\rm \:  =  \:\dfrac{{sin}^{2}\theta }{ {sin}^{2}\theta }

\rm \:  =  \:1

Hence,

\: \boxed{ \:  \:  \:  \bf{ \: cosec\theta (1 + cos\theta )(cosec\theta  - cot\theta ) = 1 \:  \:  \: }}

Additional Information :-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions
Math, 8 months ago