Math, asked by Anonymous, 9 months ago

Simplify the following expression
i) (√3-√2) (√3+5√2)
ii) (5+√7) (2+√5)

Answers

Answered by akibaftabsifmnil
1

Step-by-step explanation:

♦ Simplification of

(i) (5 + \sqrt{7})(2 + \sqrt{5})(5+

7

)(2+

5

)

= 5( 2 + \sqrt{5} ) + \sqrt{7}(2 + \sqrt{5})=5(2+

5

)+

7

(2+

5

)

= 10 + 5 \sqrt{5} + 2 \sqrt{7} + \sqrt{ 35}=10+5

5

+2

7

+

35

(ii) (5 + \sqrt{5})(5 - \sqrt{5})(5+

5

)(5−

5

)

>> The above's equation is in the form of an Identity .

(a + b) (a - b)

• Let "5" be "a" and "\sqrt{5}

5

" be "b" .

• Then by multiplying

(a+b) (a-b)(a+b)(a−b)

= a^2 - ab + ab - b^2=a

2

−ab+ab−b

2

= a^2 - b^2=a

2

−b

2

♦ Now by substituting value

= 5^2 - \sqrt{5}^2=5

2

5

2

= 25 - 5=25−5

= 20=20

(iii) (\sqrt{3} + \sqrt{7} )^2(

3

+

7

)

2

♦ Now by using Identity

(a+b)^2 = a^2 + 2ab + b^2(a+b)

2

=a

2

+2ab+b

2

♦ We will take

a = \sqrt{3}

3

b = \sqrt{7}

7

♦ Then

(\sqrt{3} + \sqrt{7} )^2 = \sqrt{3}^2 + \sqrt{7}^2 + 2 \times \sqrt{3} \times \sqrt{7}(

3

+

7

)

2

=

3

2

+

7

2

+2×

3

×

7

= 3 + 7 + 2 \sqrt{21}=3+7+2

21

= 10 + 2\sqrt{21}=10+2

21

(iv) (\sqrt{11} - \sqrt{7})(\sqrt{11} + \sqrt{7})(

11

7

)(

11

+

7

)

>> The above's equation is in the form of an Identity .

(a - b) (a + b)

• Let "\sqrt{11}

11

" be "a" and "\sqrt{7}

7

" be "b" .

• Then by multiplying

(a - b) (a+b)(a−b)(a+b)

= a^2 + ab - ab - b^2=a

2

+ab−ab−b

2

= a^2 - b^2=a

2

−b

2

♦ Now by substituting value

= \sqrt{11}^2 - \sqrt{7}^2=

11

2

7

2

= 11 - 7=11−7

=4

Similar questions