Math, asked by 12ahujagitansh, 1 day ago

Simplify the following limit

 \lim \: x \:  \to \: 2 \:  \frac{x +  {x}^{2} +  {x}^{3}  +  {x}^{4} - 30  }{x - 2}

Don't apply L Hospital Rule​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \displaystyle\lim_{x \to 2}\rm  \frac{x +  {x}^{2}  +  {x}^{3}  +  {x}^{4}  - 30}{x - 2}  \\

If we substitute directly x = 2, we get

\rm \:  =   \frac{2 +  {2}^{2}  +  {2}^{3}  +  {2}^{4}  - 30}{2 - 2}  \\

\rm \:  =   \frac{2 +  4 + 8 + 16- 30}{0}  \\

\rm \:  =   \frac{30- 30}{0}  \\

\rm \:  =   \frac{0}{0}  \\

which is indeterminant form.

So, Consider again

\rm \: \displaystyle\lim_{x \to 2}\rm  \frac{x +  {x}^{2}  +  {x}^{3}  +  {x}^{4}  - 30}{x - 2}  \\

can be rewritten as

\rm \:  =  \: \displaystyle\lim_{x \to 2}\rm  \frac{x +  {x}^{2}  +  {x}^{3}  +  {x}^{4}  - (2 + 4 + 8 + 16)}{x - 2}  \\

\rm \:  =  \: \displaystyle\lim_{x \to 2}\rm  \frac{x +  {x}^{2}  +  {x}^{3}  +  {x}^{4}  - 2  -  4  -  8  -  16}{x - 2}  \\

\rm \:  =  \: \displaystyle\lim_{x \to 2}\rm  \frac{(x - 2) +  ({x}^{2} - 4)  +  ({x}^{3} - 8) +  ({x}^{4} - 16)}{x - 2}  \\

can be further rewritten as

\rm \:  =  \: \displaystyle\lim_{x \to 2}\rm  \frac{x - 2}{x - 2} + \displaystyle\lim_{x \to 2}\rm  \frac{ {x}^{2} -  {2}^{2}  }{x - 2} + \displaystyle\lim_{x \to 2}\rm  \frac{ {x}^{3}  -  {2}^{3} }{x - 2} + \displaystyle\lim_{x \to 2}\rm  \frac{ {x}^{4}  -  {2}^{4} }{x - 2}  \\

We know,

\boxed{\tt{ \displaystyle\lim_{x \to a}\rm  \frac{ {x}^{n}  -  {a}^{n} }{x - a} \:  =  {na}^{n - 1}   \: }} \\

So, using this result, we get

\rm \:  =  \: 1 +  {2(2)}^{2 - 1} +  {3(2)}^{2 - 1} +  {4(2)}^{4 - 1} \\

\rm \:  =  \: 1 + 4 + 12 + 32 \\

\rm \:  =  \: 49 \\

Hence,

\rm\implies \:\boxed{\tt{  \displaystyle\lim_{x \to 2}\rm  \frac{x +  {x}^{2}  +  {x}^{3}  +  {x}^{4}  - 30}{x - 2}   = 49 \: }}\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\rm \: \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x}  \:  =  \: 1 \\

\rm \: \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x}  \:  =  \: 1 \\

\rm \: \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x}  \:  =  \: 1 \\

\rm \: \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x} - 1 }{x}  \:  =  \: 1 \\

\rm \: \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x} - 1 }{x}  \:  =  \: loga \\

Similar questions