Math, asked by mehtag1, 1 year ago

Simplify the following question:-


And before solving ensure that the answer is perfectly alright and correct, the one who will solve it correctly will be marked as brainliest....

Attachments:

Answers

Answered by mysticd
1

Answer:

 3\sqrt[3]{250}+7\sqrt[3]{16}-4\sqrt[3]{54}=17\sqrt[3]{2}

Step-by-step explanation:

 Given 3\sqrt[3]{250}+7\sqrt[3]{16}-4\sqrt[3]{54}

 = 3\sqrt[3]{5^{3}\times 2}+7\sqrt[3]{2^{3}\times 2 }-4\sqrt[3]{3^{3}\times 2}

=3\times 5\sqrt[3]{2}+7\times 2\sqrt[3]{2}-4\times 3\sqrt[3]{2}

= 15\sqrt[3]{2}+14\sqrt[3]{2}-12\sqrt[3]{2}

=(15+14-12)\sqrt[3]{2}

=17\sqrt[3]{2}

Therefore,

 3\sqrt[3]{250}+7\sqrt[3]{16}-4\sqrt[3]{54}=17\sqrt[3]{2}

•••♪


mehtag1: The answer is perfectly alright
mysticd: :)
Answered by manyawalia2006
0

Answer:

3\sqrt[3]{250}+7\sqrt[3]{16}-4\sqrt[3]{54}=17\sqrt[3]{2}

Step-by-step explanation:

Given 3\sqrt[3]{250}+7\sqrt[3]{16}-4\sqrt[3]{54}

= 3\sqrt[3]{5^{3}\times 2}+7\sqrt[3]{2^{3}\times 2 }-4\sqrt[3]{3^{3}\times 2}

=3\times 5\sqrt[3]{2}+7\times 2\sqrt[3]{2}-4\times 3\sqrt[3]{2}

= 15\sqrt[3]{2}+14\sqrt[3]{2}-12\sqrt[3]{2}

=(15+14-12)\sqrt[3]{2}

=17\sqrt[3]{2}

Therefore,

3\sqrt[3]{250}+7\sqrt[3]{16}-4\sqrt[3]{54}=17\sqrt[3]{2}

Similar questions
Math, 1 year ago