Math, asked by Anonymous, 3 months ago

Simplify the following:-

\frac{ {3}^{n} \times {9}^{n + 1} }{ {3}^{n - 1} \times {9}^{n - 1} }

 \frac{5 \times {25}^{n + 1} - 25 \times {5}^{2n} }{5 \times {5}^{2n + 3} - {(25)}^{n + 1} }

 \frac{ {5}^{n + 3} - 6 \times {5}^{n + 1} }{9 \times {5}^{x} - {2}^{2} \times {5}^{n} }

 \frac{6 {(8)}^{n + 1} + 16 {(2)}^{3n - 2} }{10 {(2)}^{3n + 1} - 7 {(8)}^{n} }

Please solve these questions.​

Answers

Answered by ITzUnknown100
5

Answer:

4.7/5. 195. mysticd. Genius. 20.7K answers. 183.6M people helped. Hi , ( 3ⁿ × 9^n+1 )/( 3^n-1 × 9^n-1 ) = [ 3ⁿ × ( 3² )^n + 1 ]/[ ...

Step-by-step explanation:

ab bol bhi do

Answered by MrImpeccable
47

ANSWER:

\text{1) $\dfrac{3^n\times9^{n+1}}{3^{n-1}\times9^{n-1}}$}\\\\:\implies\dfrac{3^n\times9^{n+1}}{3^{n-1}\times9^{n-1}}\\\\:\implies\dfrac{3^n\times3^{2(n+1)}}{3^{n-1}\times3^{2(n-1)}}\\\\:\implies\dfrac{3^n\times3^{2n+2}}{3^{n-1}\times3^{2n-2}}\\\\\text{As, $a^x\times a^y=a^{x+y}\:and\:a^x\div a^y=a^{x-y}$. So,}\\\\:\implies 3^{n+2n+2-(n-1)-(2n-2)}\\\\:\implies3^{n\!\!\!/\,+\,2n\!\!\!\!/\,+\,2\,-\,n\!\!\!/\,+\,1\,-\,2n\!\!\!\!/\,-\,2}\\\\:\implies 3^{1+2+2}\\\\\bf{:\implies 3^5}\\

\text{2) $\dfrac{5\times25^{n+1}-25\times5^{2n}}{5\times5^{2n+3}-25^{n+1}}$}\\\\:\implies\dfrac{5\times25^{n+1}-25\times5^{2n}}{5\times5^{2n+3}-25^{n+1}}\\\\:\implies\dfrac{5\times5^{2(n+1)}-5^2\times5^{2n}}{5\times5^{2n+3}-5^{2(n+1)}}\\\\:\implies\dfrac{5\times5^{2n+2}-5^2\times5^{2n}}{5\times5^{2n+3}-5^{2n+2}}\\\\\text{As, $a^x\times a^y=a^{x+y}$. So,}\\\\:\implies\dfrac{5^{1+2n+2}-5^{2+2n}}{5^{1+2n+3}-5^{2n+2}}\\\\:\implies\dfrac{5^{2n+3}-5^{2n+2}}{5^{2n+4}-5^{2n+2}}\\\\\text{Taking $5^{2n+2}$ common,}

:\implies\dfrac{5^{2n+2}(5-1)}{5^{2n+2}(5^2-1)}\\\\\text{$5^{2n+2}$ gets cancelled. So,}\\\\:\implies\dfrac{5-1}{25-1}\\\\:\implies\dfrac{4\!\!\!/^{\:1}}{24\!\!\!\!/_{\:\:6}}\\\\\bf{:\implies\dfrac{1}{6}}\\

\text{3) $\dfrac{5^{n+3}-6\times5^{n+1}}{9\times5^{n}-2^2\times5^{n}}$}\\\\:\implies\dfrac{5^{n+3}-6\times5^{n+1}}{9\times5^{n}-2^2\times5^{n}}\\\\:\implies\dfrac{5^{n+3}-6\times5^{n+1}}{3^2\times5^{n}-2^2\times5^{n}}\\\\\text{Taking $5^n$ common.}\\\\:\implies\dfrac{5^n(5^3-6\times5)}{5^n(3^2-2^2)}\\\\\text{$5^n$ gets cancelled,}\\\\:\implies\dfrac{5^3-6\times5}{3^2-2^2}\\\\:\implies\dfrac{5(25-6)}{9-4} \\\\:\implies\dfrac{5(25-6)}{5}\\\\\bf{:\implies19}\\

\text{4) $\dfrac{6(8)^{n+1}+16(2)^{3n-2}}{10(2)^{3n+1}-7(8)^{n}}$}\\\\:\implies\dfrac{6(8)^{n+1}+16(2)^{3n-2}}{10(2)^{3n+1}-7(8)^{n}}\\\\:\implies\dfrac{(2\times3)\times(2)^{3(n+1)}+(2^4)\times(2)^{3n-2}}{(2\times5)\times(2)^{3n+1}-(7)\times(2)^{3n}}\\\\:\implies\dfrac{2\times3\times2^{3n+3}+2^4\times2^{3n-2}}{2\times5\times2^{3n+1}-7\times2^{3n}}\\\\\text{As, $a^x\times a^y=a^{x+y}$. So,}\\\\:\implies\dfrac{3\times2^{1+3n+3}+2^{4+3n-2}}{5\times2^{1+3n+1}-7\times2^{3n}}

:\implies\dfrac{3\times2^{3n+4}+2^{3n+2}}{5\times2^{3n+2}-7\times2^{3n}}\\\\\text{Taking $2^{3n}$ common}\\\\:\implies \dfrac{2^{3n}(3\times2^4+2^2)}{2^{3n}(5\times2^2-7)}\\\\\text{$2^{3n}$ gets cancelled,}\\\\:\implies\dfrac{3\times2^4+2^2}{5\times2^2-7}\\\\:\implies\dfrac{3\times16+4}{5\times4-7}\\\\:\implies\dfrac{48+4}{20-7}\\\\:\implies\dfrac{52\!\!\!\!/^{\:\:4}}{13\!\!\!\!/_{\:1}}\\\\\bf{:\implies 4}\\

Formulae Used:

  • a^x * a^y = a^{x + y}
  • a^x ÷ a^y = a^{x - y}
Similar questions