Math, asked by khushi15686, 17 days ago

Simplify the following

tan82 \frac{1}{2}  \degree

Explain all the steps involved.


Best User

Moderator

Brainly Star

Answers

Answered by mathdude500
25

\large\underline{\sf{Solution-}}

Given Trigonometric expression is

\rm \: tan82 \frac{1}{2}\degree \\

can be rewritten as

\rm \: =  \:  tan\bigg(90\degree - 7 \frac{1}{2}\degree \bigg)\\

\rm \: =  \:  cot7 \frac{1}{2}\degree \\

\rm \: =  \:  cot\frac{15}{2}\degree \\

Let assume that

\rm \:x =  \: \frac{15}{2}\degree \\

So,

\rm \: cotx =\dfrac{cosx}{sinx}  \\

can be rewritten as

\rm \: cotx =\dfrac{2cosx \times cosx}{2cosx \times sinx}  \\

\rm \: cotx =\dfrac{ {2cos}^{2}x }{sin2x}  \\

\rm \: cotx =\dfrac{1 + cos2x}{sin2x}  \\

On substituting the value of x, we again

\rm \: cot \frac{15}{2}\degree  =\dfrac{1 + cos15\degree}{sin15\degree}  -  -  - (1) \\

Now, Consider

\rm \: cos15\degree = cos(45\degree - 30\degree) \\

\rm \: cos15\degree = cos45\degree \: cos30\degree  + sin45\degree \: sin30\degree \\

\rm \: cos15\degree = \dfrac{1}{ \sqrt{2} }  \times \dfrac{ \sqrt{3} }{2}  + \dfrac{1}{ \sqrt{2} }  \times \dfrac{1}{2}  \\

\rm\implies \:cos15\degree = \dfrac{ \sqrt{3} + 1}{2 \sqrt{2} }   -  -  - (2)\\

Now, Consider

\rm \: sin15\degree = sin(45\degree - 30\degree) \\

\rm \: sin15\degree = sin45\degree \: cos30\degree \:  -  \: cos45\degree \: sin30\degree \\

\rm \: sin15\degree = \dfrac{1}{ \sqrt{2} }  \times \dfrac{ \sqrt{3} }{2}  - \dfrac{1}{ \sqrt{2} }  \times \dfrac{1}{2}  \\

\rm\implies \:sin15\degree = \dfrac{ \sqrt{3} - 1}{2 \sqrt{3} }   -  -  - (2)\\

On substituting the values from equation (2) and (3) in equation (1), we get

\rm \: cot \frac{15}{2}\degree  =\dfrac{1 + cos15\degree}{sin15\degree}   \\

\rm \:  =  \: \dfrac{1 + \dfrac{ \sqrt{3}  + 1}{2 \sqrt{2} } }{\dfrac{ \sqrt{3}  - 1}{2 \sqrt{2} } }  \\

\rm \:  =  \: \dfrac{\dfrac{2 \sqrt{2}  +  \sqrt{3}  + 1}{2 \sqrt{2} } }{\dfrac{ \sqrt{3}  - 1}{2 \sqrt{2} } }  \\

\rm \:  =  \:  \dfrac{2 \sqrt{2}  +  \sqrt{3}  + 1}{ \sqrt{3} - 1}   \\

\rm \:  =  \:  \dfrac{2 \sqrt{2}  +  \sqrt{3}  + 1}{ \sqrt{3} - 1} \times  \frac{ \sqrt{3}  + 1}{ \sqrt{3}  + 1}  \\

\rm \:  =  \:  \dfrac{2 \sqrt{6}  +  3  +  \sqrt{3}  + 2 \sqrt{2}  +  \sqrt{3}  + 1}{ (\sqrt{3})^{2}  -  {1}^{2} }   \\

\rm \:  =  \:  \dfrac{2 \sqrt{6} + \sqrt{3}  + 2 \sqrt{2}  +  \sqrt{3}  + 4}{ 3 - 1}   \\

\rm \:  =  \:  \dfrac{2\sqrt{6} +2 \sqrt{3}  + 2 \sqrt{2}+ 4}{ 2}   \\

\rm \:  =  \:  \dfrac{2(\sqrt{6} + \sqrt{3}  + \sqrt{2}+ 2)}{ 2}   \\

\rm \:  =  \:  \sqrt{6} +  \sqrt{3} +  \sqrt{2} + 2 \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \:cot7 {\dfrac{1}{2} }^{\degree}   =  \:  \sqrt{6} +  \sqrt{3} +  \sqrt{2} + 2 \:  \: }} \\

\rule{190pt}{2pt}

Formulae Used :-

\boxed{ \rm{ \:sin2x = 2sinx \: cosx \: }} \\

\boxed{ \rm{ \:cos2x =  {2cos}^{2}x - 1 \: }} \\

\boxed{ \rm{ \:cos(x -  y) = cosxcosy  + sinxsiny \: }} \\

\boxed{ \rm{ \:sin(x -  y) = sinxcosy   -  cosxsiny \: }} \\

\rule{190pt}{2pt}

\begin{gathered} { \boxed{ \begin{array}{c} \underline{\underline{ \color{orange} \text{Additional \: lnformation}}} \\&  \rm \: sin2x  \: =  2 \: sinx \: cosx\:\\ &  \rm \: cos2x = 1 -  {2sin}^{2}x \\ &  \rm \: cos2x =  {2cos}^{2}x - 1 \\ &  \rm \: cos2x =  {cos}^{2}x -  {sin}^{2}x \\ &  \rm \:tan2x =  \dfrac{2tanx}{1 -  {tan}^{2} x} \\ &  \rm \: sin2x =  \dfrac{2tanx}{1 +  {tan}^{2}x } \\ &  \rm \:sin3x = 3sinx -  {4sin}^{3}x \\ &  \rm \: cos3x =  {4cos}^{3}x - 3cosx \\ &  \rm \: tan3x =  \dfrac{3tanx -  {tan}^{3} x}{1 -  {3tan}^{2}x}  \end{array}}}\end{gathered}

Answered by talpadadilip417
7

Step-by-step explanation:

\begin{array}{l} \rm \displaystyle \tan 30=\frac{1}{\sqrt{3}}  \\  \\   \displaystyle\rm \frac{2 \tan 15}{1-\tan ^{2} 15}=\frac{1}{\sqrt{3}}  \text{ Let} \tan 15=a \\  \\   \displaystyle\rm 2 \sqrt{3} a=1-a^{2} \\  \\   \displaystyle\rm a^{2}+2 \sqrt{3} a-1=0 \\  \\   \displaystyle\rm a=\frac{-2 \sqrt{3} \pm \sqrt{12+4}}{2} \quad(\because \tan 15>0) \\  \\   \displaystyle\rm \therefore \tan 15=2-\sqrt{3} \\  \\   \displaystyle\rm  \displaystyle\rm \frac{2 \tan 7 \dfrac{1}{2}^{\circ}}{1-\tan ^{2} 7 \dfrac{1}{2}^{\circ}}-2-\sqrt{3}   \:  \:  \:  \:  \:\\  \\  \displaystyle \rm  \text{Let} \tan 7 \frac{1}{2} ^{ \circ}=b \\  \\   \displaystyle\rm 2 b=(2-\sqrt{3})\left(1-b^{2}\right) \\  \\   \displaystyle\rm (2-\sqrt{3}) b^{2}+2 b-(2-\sqrt{3})=0 \\  \\   \displaystyle\rm \therefore b=\frac{-2+\sqrt{4+4(2-\sqrt{3})^{2}}}{2(2-\sqrt{3})} \quad\left(\because \tan 7 \frac{1}{2}^{\circ}>0\right) \\  \\ \rm  \displaystyle=\frac{-1+\sqrt{8-4 \sqrt{3}}}{(2-\sqrt{3})} \\  \\   \displaystyle\rm \therefore \tan 7 \frac{1}{2}^{\circ}=\frac{\sqrt{6}-\sqrt{2}-1}{2-\sqrt{3}} \\  \\   \displaystyle\rm \tan 82 \frac{1}{2}^{\circ}=\cot 7 \frac{1}{2}^{\circ}=\frac{2-\sqrt{3}}{\sqrt{6}-\sqrt{2}-1}  \end{array}

\begin{array}{l}   \displaystyle \rm=\frac{(2-\sqrt{3})(\sqrt{6}+\sqrt{2}+1)}{(\sqrt{6}-(\sqrt{2}+1))(\sqrt{6}+\sqrt{2}+1)}  \\  \\  \displaystyle \rm =\frac{2 \sqrt{6}-3 \sqrt{2}+2 \sqrt{2}-\sqrt{6}+2-\sqrt{3}}{6-(\sqrt{2}+1)^{2}} \\  \\  \displaystyle \rm =\frac{\sqrt{6}-\sqrt{2}+2-\sqrt{3}}{3-2 \sqrt{2}} \\  \\  \displaystyle \rm =\frac{(\sqrt{2}-1)(\sqrt{3}+\sqrt{2})}{(\sqrt{2}-1)^{2}} \\  \\  \displaystyle \rm =\frac{\sqrt{3}+\sqrt{2}}{\sqrt{2}-1}=(\sqrt{3}+\sqrt{2})(\sqrt{2}+1) \\  \\  \color{olive} \boxed {\displaystyle \rm \therefore \tan 82 \frac{1}{2}^{ \degree} =(\sqrt{3}+\sqrt{2})(\sqrt{2}+1) }\end{array}

Similar questions