Math, asked by tanishadhingra1194, 9 months ago

Simplify the following using suitable identities (3p+8q)^2 + (3p-8q)^2 - (s+4) (s-5)​

Answers

Answered by MaIeficent
38

Step-by-step explanation:

{\red{\underline{\underline{\bold{Given:-}}}}}

  • \sf {(3p + 8q)}^{2}  +  {(3p - 8q)}^{2} - (s + 4)(s - 5)

{\blue{\underline{\underline{\bold{Solution:-}}}}}

\sf \: By \: \:  using \:  \: the \:  \: identity:-

\sf \green{(a \:  +  \: b)(a \:  -  \: b) =  {a}^{2}  -  {b}^{2} }

\sf {(3p + 8q)}^{2}  +  {(3p - 8q)}^{2} - (s + 4)(s - 5)

\sf {(3p )}^{2}   - {( 8q)}^{2} - (s + 4)(s - 5)

\sf {9p}^{2}   - {64q}^{2} -  \big \{s(s - 5) + 4(s - 5) \big \}

\sf {9p}^{2}   - {64q}^{2} -  \big \{ ( {s}^{2}  - 5s) + (4s - 20) \big \}

\sf {9p}^{2}   - {64q}^{2} -  \big \{ {s}^{2}  - 5s + 4s - 20 \big \}

\sf {9p}^{2}   - {64q}^{2} -  \big \{ {s}^{2}  - s - 20 \big \}

\boxed{ \sf \purple{{9p}^{2}   - {64q}^{2} -  {s}^{2}   + s  +  20}}

Similar questions