Math, asked by IIhelloll, 1 month ago

Simplify the following using the identity
 \tiny(x + a)(x + b) =  {x}^{2}  + x(a + b) + ab: \\\  \textless \ br /\  \textgreater \ (i)(x+3)(x+5) \\\  \textless \ br /\  \textgreater \ (ii)(y+8)(y+6) \\\  \textless \ br /\  \textgreater \ (iii)43×36
No copied answers.​

Answers

Answered by BrainlyVarshu
10

Solution:-

(i) (x+3)(x+5)

Let us represent the expression giometrically, as shown in the fig. 3.11.

In the rectangle with length (x+5) and breadth (x+3),

We get,

   \small\tiny\bold \color{navy} \: area \: of \: bigger \: rectangle \:  = area \: of \: square +   area \: of \: three \: rectangles

Therefore,

 \tiny(x + 3)( x+ 5) =  {x}^{2}  + 5x + 3x + 15

 \tiny  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  =  {x}^{2}  +( 5 + 3)x  + 15 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tiny  {x}^{2}  + 8x + 15.

(ii) (y+6)(y+8)

 \color {purple}\tiny \sf \underline {let \: us \: represent \: the \: expression \: geometrically} \\  \color{purple} \tiny \sf \underline  {as \: shown \: in \: fig.3.12. \: in \: the \: rectangle \: with \: length(y +6 )} \\  \color{purple} \sf \tiny \underline{and \: breadth \: (y + 8)units}

We get,

 \color {navy} \tiny \sf \underline  {area \: of \: bigger \: rectangle \:  = area \: of \: square + area \: of \: three }\: \\   \tiny\sf \color{navy}  \underline  {rectangles}

Therefore,

 \tiny(y + 6)(y + 8) =  {y}^{2}  + 6y + 8y + 48

 \tiny(y + 6)( y+ 8) =  {y}^{2} + (6 + 8)y + 48

 \tiny \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  {y}^{2} + 14y + 48

(iii) 43×36=(40+3)×(40-4)

We know the identity,

 \tiny(x + a)(x + b) =  {x}^{2}  + x(a + b) + ab

 \color{orange} \tiny \sf \: taking \: x = 40   \: and\: \: a = 3 \: and \: b =  - 4 \:and \: we \: get

 \tiny(40 + 30)(40 - 4) =  {40}^{2} + 40 (3 - 4) + 3( - 4)

   \sf\tiny= 1600 + 40( - 1) - 12 \\ \sf \tiny  = 1600 - 40 - 12 \\  \sf \tiny = 1600 - 52

Therefore,

 \color{navy}43 \times 36 = 1548

 \huge  \sf\color{red} \star{hope \: it \: helps}

Attachments:
Similar questions