Simplify the given expression.
4(-3p^3q^3 + 2p^2q^2- pq^2 + 4) – 14(-p^3q^3– 2p^2q^2– pq^2 +1)
please fast
Answers
Answer:
STEP
1
:
Equation at the end of step 1
(4•((((0-((3•(p3))•(q3)))+((2•(p2))•(q2)))-(p•(q2)))+4))-(14•((((0-((p3)•(q3)))-(2p2•q2))-pq2)+1))
STEP
2
:
STEP
3
:
Pulling out like terms
3.1 Pull out like factors :
-p3q3 - 2p2q2 - pq2 + 1 =
-1 • (p3q3 + 2p2q2 + pq2 - 1)
Checking for a perfect cube :
3.2 p3q3 + 2p2q2 + pq2 - 1 is not a perfect cube
Equation at the end of step
3
:
(4•((((0-((3•(p3))•(q3)))+((2•(p2))•(q2)))-(p•(q2)))+4))--14•(p3q3+2p2q2+pq2-1)
STEP
4
:
Equation at the end of step
4
:
(4•((((0-((3•(p3))•(q3)))+(2p2•q2))-pq2)+4))--14•(p3q3+2p2q2+pq2-1)
STEP
5
:
Equation at the end of step
5
:
(4•((((0-(3p3•q3))+2p2q2)-pq2)+4))--14•(p3q3+2p2q2+pq2-1)
STEP
6
:
Checking for a perfect cube
6.1 -3p3q3+2p2q2-pq2+4 is not a perfect cube
Equation at the end of step
6
:
4•(-3p3q3+2p2q2-pq2+4)--14•(p3q3+2p2q2+pq2-1)
STEP
7
:
STEP
8
:
Pulling out like terms
8.1 Pull out like factors :
2p3q3 + 36p2q2 + 10pq2 + 2 =
2 • (p3q3 + 18p2q2 + 5pq2 + 1)
Checking for a perfect cube :
8.2 p3q3 + 18p2q2 + 5pq2 + 1 is not a perfect cube
Final result :
2 • (p3q3 + 18p2q2 + 5pq2 + 1)