Math, asked by jjpsayush, 3 months ago

simplify the given expression under root 6 minus under root 2 under root 7 + under root 2​

Answers

Answered by avdlt6393
1

Step-by-step explanation:

Given expression is,

\frac{\sqrt{6} }{\sqrt{2} + \sqrt{3} } + \frac{3\sqrt{2} }{\sqrt{6}+\sqrt{3} } - \frac{4\sqrt{3} }{\sqrt{6}+\sqrt{2} }

2

+

3

6

+

6

+

3

3

2

6

+

2

4

3

By rationalizing each term,

=\frac{\sqrt{6}(-\sqrt{2} + \sqrt{3}) }{(\sqrt{3})^2 - (\sqrt{2})^2 } + \frac{3\sqrt{2}(\sqrt{6}-\sqrt{3}) }{(\sqrt{6})^2-(\sqrt{3})^2 } - \frac{4\sqrt{3}(\sqrt{6}-\sqrt{2}) }{(\sqrt{6})^2-(\sqrt{2})^2 }=

(

3

)

2

−(

2

)

2

6

(−

2

+

3

)

+

(

6

)

2

−(

3

)

2

3

2

(

6

3

)

(

6

)

2

−(

2

)

2

4

3

(

6

2

)

=\sqrt{6}(-\sqrt{2} + \sqrt{3})+\sqrt{2}(\sqrt{6}-\sqrt{3} ) -\sqrt{3} (\sqrt{6}-\sqrt{2} )=

6

(−

2

+

3

)+

2

(

6

3

)−

3

(

6

2

)

=-\sqrt{12} + \sqrt{18} + \sqrt{12} - \sqrt{6} - \sqrt{18} + \sqrt{6}=−

12

+

18

+

12

6

18

+

6

=0=0

Hence,

\frac{\sqrt{6} }{\sqrt{2} + \sqrt{3} } + \frac{3\sqrt{2} }{\sqrt{6}+\sqrt{3} } - \frac{4\sqrt{3} }{\sqrt{6}+\sqrt{2} }=0

2

+

3

6

+

6

+

3

3

2

6

+

2

4

3

=0. mark me brainest I. Given expression is,

\frac{\sqrt{6} }{\sqrt{2} + \sqrt{3} } + \frac{3\sqrt{2} }{\sqrt{6}+\sqrt{3} } - \frac{4\sqrt{3} }{\sqrt{6}+\sqrt{2} }

2

+

3

6

+

6

+

3

3

2

6

+

2

4

3

By rationalizing each term,

=\frac{\sqrt{6}(-\sqrt{2} + \sqrt{3}) }{(\sqrt{3})^2 - (\sqrt{2})^2 } + \frac{3\sqrt{2}(\sqrt{6}-\sqrt{3}) }{(\sqrt{6})^2-(\sqrt{3})^2 } - \frac{4\sqrt{3}(\sqrt{6}-\sqrt{2}) }{(\sqrt{6})^2-(\sqrt{2})^2 }=

(

3

)

2

−(

2

)

2

6

(−

2

+

3

)

+

(

6

)

2

−(

3

)

2

3

2

(

6

3

)

(

6

)

2

−(

2

)

2

4

3

(

6

2

)

=\sqrt{6}(-\sqrt{2} + \sqrt{3})+\sqrt{2}(\sqrt{6}-\sqrt{3} ) -\sqrt{3} (\sqrt{6}-\sqrt{2} )=

6

(−

2

+

3

)+

2

(

6

3

)−

3

(

6

2

)

=-\sqrt{12} + \sqrt{18} + \sqrt{12} - \sqrt{6} - \sqrt{18} + \sqrt{6}=−

12

+

18

+

12

6

18

+

6

=0=0

Hence,

\frac{\sqrt{6} }{\sqrt{2} + \sqrt{3} } + \frac{3\sqrt{2} }{\sqrt{6}+\sqrt{3} } - \frac{4\sqrt{3} }{\sqrt{6}+\sqrt{2} }=0

2

+

3

6

+

6

+

3

3

2

6

+

2

4

3

=0

Answered by HorridAshu
0

Step-by-step explanation:

Step-by-step explanation:</p><p>Given expression is,</p><p></p><p>\frac{\sqrt{6} }{\sqrt{2} + \sqrt{3} } + \frac{3\sqrt{2} }{\sqrt{6}+\sqrt{3} } - \frac{4\sqrt{3} }{\sqrt{6}+\sqrt{2} } </p><p>2</p><p>	</p><p> + </p><p>3</p><p>	</p><p> </p><p>6</p><p>	</p><p> </p><p>	</p><p> + </p><p>6</p><p>	</p><p> + </p><p>3</p><p>	</p><p> </p><p>3 </p><p>2</p><p>	</p><p> </p><p>	</p><p> − </p><p>6</p><p>	</p><p> + </p><p>2</p><p>	</p><p> </p><p>4 </p><p>3</p><p>	</p><p> </p><p>	</p><p> </p><p></p><p>By rationalizing each term,</p><p></p><p>=\frac{\sqrt{6}(-\sqrt{2} + \sqrt{3}) }{(\sqrt{3})^2 - (\sqrt{2})^2 } + \frac{3\sqrt{2}(\sqrt{6}-\sqrt{3}) }{(\sqrt{6})^2-(\sqrt{3})^2 } - \frac{4\sqrt{3}(\sqrt{6}-\sqrt{2}) }{(\sqrt{6})^2-(\sqrt{2})^2 }= </p><p>( </p><p>3</p><p>	</p><p> ) </p><p>2</p><p> −( </p><p>2</p><p>	</p><p> ) </p><p>2</p><p> </p><p>6</p><p>	</p><p> (− </p><p>2</p><p>	</p><p> + </p><p>3</p><p>	</p><p> )</p><p>	</p><p> + </p><p>( </p><p>6</p><p>	</p><p> ) </p><p>2</p><p> −( </p><p>3</p><p>	</p><p> ) </p><p>2</p><p> </p><p>3 </p><p>2</p><p>	</p><p> ( </p><p>6</p><p>	</p><p> − </p><p>3</p><p>	</p><p> )</p><p>	</p><p> − </p><p>( </p><p>6</p><p>	</p><p> ) </p><p>2</p><p> −( </p><p>2</p><p>	</p><p> ) </p><p>2</p><p> </p><p>4 </p><p>3</p><p>	</p><p> ( </p><p>6</p><p>	</p><p> − </p><p>2</p><p>	</p><p> )</p><p>	</p><p> </p><p></p><p>=\sqrt{6}(-\sqrt{2} + \sqrt{3})+\sqrt{2}(\sqrt{6}-\sqrt{3} ) -\sqrt{3} (\sqrt{6}-\sqrt{2} )= </p><p>6</p><p>	</p><p> (− </p><p>2</p><p>	</p><p> + </p><p>3</p><p>	</p><p> )+ </p><p>2</p><p>	</p><p> ( </p><p>6</p><p>	</p><p> − </p><p>3</p><p>	</p><p> )− </p><p>3</p><p>	</p><p> ( </p><p>6</p><p>	</p><p> − </p><p>2</p><p>	</p><p> )</p><p></p><p>=-\sqrt{12} + \sqrt{18} + \sqrt{12} - \sqrt{6} - \sqrt{18} + \sqrt{6}=− </p><p>12</p><p>	</p><p> + </p><p>18</p><p>	</p><p> + </p><p>12</p><p>	</p><p> − </p><p>6</p><p>	</p><p> − </p><p>18</p><p>	</p><p> + </p><p>6</p><p>	</p><p> </p><p></p><p>=0=0</p><p></p><p>Hence,</p><p></p><p>\frac{\sqrt{6} }{\sqrt{2} + \sqrt{3} } + \frac{3\sqrt{2} }{\sqrt{6}+\sqrt{3} } - \frac{4\sqrt{3} }{\sqrt{6}+\sqrt{2} }=0 </p><p>2</p><p>	</p><p> + </p><p>3</p><p>	</p><p> </p><p>6</p><p>	</p><p> </p><p>	</p><p> + </p><p>6</p><p>	</p><p> + </p><p>3</p><p>	</p><p> </p><p>3 </p><p>2</p><p>	</p><p> </p><p>	</p><p> − </p><p>6</p><p>	</p><p> + </p><p>2</p><p>	</p><p> </p><p>4 </p><p>3</p><p>	</p><p> </p><p>	</p><p> =0.   mark me brainest I. Given expression is,</p><p></p><p>\frac{\sqrt{6} }{\sqrt{2} + \sqrt{3} } + \frac{3\sqrt{2} }{\sqrt{6}+\sqrt{3} } - \frac{4\sqrt{3} }{\sqrt{6}+\sqrt{2} } </p><p>2</p><p>	</p><p> + </p><p>3</p><p>	</p><p> </p><p>6</p><p>	</p><p> </p><p>	</p><p> + </p><p>6</p><p>	</p><p> + </p><p>3</p><p>	</p><p> </p><p>3 </p><p>2</p><p>	</p><p> </p><p>	</p><p> − </p><p>6</p><p>	</p><p> + </p><p>2</p><p>	</p><p> </p><p>4 </p><p>3</p><p>	</p><p> </p><p>	</p><p> </p><p></p><p>By rationalizing each term,</p><p></p><p>=\frac{\sqrt{6}(-\sqrt{2} + \sqrt{3}) }{(\sqrt{3})^2 - (\sqrt{2})^2 } + \frac{3\sqrt{2}(\sqrt{6}-\sqrt{3}) }{(\sqrt{6})^2-(\sqrt{3})^2 } - \frac{4\sqrt{3}(\sqrt{6}-\sqrt{2}) }{(\sqrt{6})^2-(\sqrt{2})^2 }= </p><p>( </p><p>3</p><p>	</p><p> ) </p><p>2</p><p> −( </p><p>2</p><p>	</p><p> ) </p><p>2</p><p> </p><p>6</p><p>	</p><p> (− </p><p>2</p><p>	</p><p> + </p><p>3</p><p>	</p><p> )</p><p>	</p><p> + </p><p>( </p><p>6</p><p>	</p><p> ) </p><p>2</p><p> −( </p><p>3</p><p>	</p><p> ) </p><p>2</p><p> </p><p>3 </p><p>2</p><p>	</p><p> ( </p><p>6</p><p>	</p><p> − </p><p>3</p><p>	</p><p> )</p><p>	</p><p> − </p><p>( </p><p>6</p><p>	</p><p> ) </p><p>2</p><p> −( </p><p>2</p><p>	</p><p> ) </p><p>2</p><p> </p><p>4 </p><p>3</p><p>	</p><p> ( </p><p>6</p><p>	</p><p> − </p><p>2</p><p>	</p><p> )</p><p>	</p><p> </p><p></p><p>=\sqrt{6}(-\sqrt{2} + \sqrt{3})+\sqrt{2}(\sqrt{6}-\sqrt{3} ) -\sqrt{3} (\sqrt{6}-\sqrt{2} )= </p><p>6</p><p>	</p><p> (− </p><p>2</p><p>	</p><p> + </p><p>3</p><p>	</p><p> )+ </p><p>2</p><p>	</p><p> ( </p><p>6</p><p>	</p><p> − </p><p>3</p><p>	</p><p> )− </p><p>3</p><p>	</p><p> ( </p><p>6</p><p>	</p><p> − </p><p>2</p><p>	</p><p> )</p><p></p><p>=-\sqrt{12} + \sqrt{18} + \sqrt{12} - \sqrt{6} - \sqrt{18} + \sqrt{6}=− </p><p>12</p><p>	</p><p> + </p><p>18</p><p>	</p><p> + </p><p>12</p><p>	</p><p> − </p><p>6</p><p>	</p><p> − </p><p>18</p><p>	</p><p> + </p><p>6</p><p>	</p><p> </p><p></p><p>=0=0</p><p></p><p>Hence,</p><p></p><p>\frac{\sqrt{6} }{\sqrt{2} + \sqrt{3} } + \frac{3\sqrt{2} }{\sqrt{6}+\sqrt{3} } - \frac{4\sqrt{3} }{\sqrt{6}+\sqrt{2} }=0 </p><p>2</p><p>	</p><p> + </p><p>3</p><p>	</p><p> </p><p>6</p><p>	</p><p> </p><p>	</p><p> + </p><p>6</p><p>	</p><p> + </p><p>3</p><p>	</p><p> </p><p>3 </p><p>2</p><p>	</p><p> </p><p>	</p><p> − </p><p>6</p><p>	</p><p> + </p><p>2</p><p>	</p><p> </p><p>4 </p><p>3</p><p>	</p><p> </p><p>	</p><p> =0

Similar questions