Math, asked by dasranjita876, 9 hours ago

simplify the given indices​

Attachments:

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

The given expression is

 \rm \:  {\bigg( {\bigg(a\bigg) }^{\dfrac{1}{x - y} } \bigg) }^{\dfrac{1}{x - z} }{\bigg( {\bigg(a \bigg) }^{\dfrac{1}{y - z} } \bigg) }^{\dfrac{1}{y - x} }{\bigg( {\bigg(a\bigg) }^{\dfrac{1}{z - x} } \bigg) }^{\dfrac{1}{z - y} }

We know that,

 \underbrace{\boxed{ \sf{ \: {( {x}^{m} )}^{n} =  {x}^{mn}}}}

So, using this identity, we get

 \rm \:  {{\bigg(a\bigg) }^{\dfrac{1}{(x - y)(x - z)} }}{{\bigg(a \bigg) }^{\dfrac{1}{(y - z)(y - x)} }}{{\bigg(a\bigg) }^{\dfrac{1}{(z - x)(z - y)} }}

We know,

 \underbrace{\boxed{ \tt{ \: {{x}^{m} \:  \times   \: {x}^{n} } =  {x}^{ \: m  \: +  \: n \: }}}}

So, using this property, we get

 \rm \:  =  \: {{\bigg(a\bigg) }^{\dfrac{1}{(x - y)(x - z)}  +  \dfrac{1}{(y - z)(y - x)} +  \dfrac{1}{(z - x)(z - y)}}}

 \rm \:  =  \: {{\bigg(a\bigg) }^{ - \dfrac{1}{(x - y)(z - x)}  -  \dfrac{1}{(y - z)(x - y)}  -   \dfrac{1}{(z - x)(y - z)}}}

 \rm \:  =  \: {{\bigg(a\bigg) }^{ - \bigg( \dfrac{1}{(x - y)(z - x)} + \dfrac{1}{(y - z)(x - y)} + \dfrac{1}{(z - x)(y - z)} \bigg)}}

 \rm \:  =  \: {{\bigg(a\bigg) }^{ - \:  \dfrac{y - z + z - x + x - y}{(x - y)(y - z)(z - x)} }}

 \rm \:  =  \: {{\bigg(a\bigg) }^{ - \:  \dfrac{0}{(x - y)(y - z)(z - x)} }}

 \rm \:  =  \:  {a}^{0}

 \rm \:  =  \: 1

Additional Information :-

 \underbrace{\boxed{ \tt{ \: {{x}^{m} \: \div   \: {x}^{n} } =  {x}^{ \: m  \:  -   \: n \: }}}}

 \underbrace{\boxed{ \tt{ {x}^{0}  \:  =  \: 1}}}

 \underbrace{\boxed{ \tt{ {x}^{ - y}  \:  =  \:  \frac{1}{ {x}^{y} } }}}

Similar questions