Math, asked by santoshnagpal01, 1 month ago

Simplify the given question (in attachment) ..as fast as possible..​

Attachments:

Answers

Answered by dhruvsharma5903
1

Answer:

A + B = 20 + 2root(10)

Step-by-step explanation:

( root(5) + root(2) )^2 = 5 + 2 + 2root(10) = 7 + 2root(10) = A

( root(8) - root(5) )^2 = 8 + 5 - 4root(10) = 13 -4root(10) = B

A + B = 20 + 2root(10)

hope this helps

Answered by 12thpáìn
4

Question

  •  \small \sf{ (\sqrt{5}  +  \sqrt{2} )}^{2}  +  {(  \sqrt{8}  -  \sqrt{5} ) }^{2}

Step by step explanation

 \sf{ ~~~~~:\implies~~(\sqrt{5}  +  \sqrt{2} )}^{2}  +  {(  \sqrt{8}  -  \sqrt{5} ) }^{2}

  •  \sf{Using \:  Identity}  \:  \footnotesize(a+b)²=a²+b²+2ab \\  \sf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \footnotesize(a-b)²=a²+b²-2ab}

 \sf{ ~~~~~:\implies~~(\sqrt{5}  )^{2} +  (\sqrt{2} )^{2}   + 2 \times  \sqrt{5} \times  \sqrt{2}  +  (  \sqrt{8} )^{2}   +  ( \sqrt{5} ) ^{2} - 2 \times  \sqrt{8} \times  \sqrt{5}  }

\sf{ ~~~~~:\implies~~5 + 2 + 2  \sqrt{10}  +  8   +  5 - 4 \sqrt{10}   }

\sf{ ~~~~~:\implies~~7   +  13 - 2 \sqrt{10} }

\sf{ ~~~~~:\implies~~20 -  2 \sqrt{10} }     \\  \\

{ \therefore \small \sf{ (\sqrt{5}  +  \sqrt{2} )}^{2}  +  {(  \sqrt{8}  -  \sqrt{5} ) }^{2} =  \bf20 - 2 \sqrt{10} }\\\\

\tiny\begin{gathered}\small{\small{\small{\small{\small{\small{\small{\small{\small{\small{\begin{gathered}\begin{gathered}\begin{gathered}\\\\\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \bigstar \: \underline{\bf{\blue{More \: Useful \: Formula}}}\\ {\boxed{\begin{array}{cc}\dashrightarrow \sf(a + b)^{2} = {a}^{2} + {b}^{2} + 2ab \\\\\dashrightarrow \sf(a - b)^{2} = {a}^{2} + {b}^{2} - 2ab \\\\\dashrightarrow \sf(a + b)(a - b) = {a}^{2} - {b}^{2} \\\\\dashrightarrow \sf(a + b) ^{3} = {a}^{3} + b^{3} + 3ab(a + b) \\\\ \dashrightarrow\sf(a - b) ^{3} = {a}^{3} - b^{3} - 3ab(a - b) \\ \\\dashrightarrow\sf a ^{3} + {b}^{3} = (a + b)(a ^{2} + {b}^{2} - ab) \\\\\dashrightarrow \sf a ^{3} - {b}^{3} = (a - b)(a ^{2} + {b}^{2} + ab \\\\\dashrightarrow \sf{a²+b²=(a+b)²-2ab}\\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}}}}}}}}}}}\end{gathered}

Similar questions