Math, asked by sadhangope907, 18 days ago

simplify the numerical expression 3-1/2+5/7÷3/4-1/2×2-1/2​

Answers

Answered by swethassynergy
0

\frac{90}{7} a fractional number =  3-1/2+5/7÷3/4-1/2×2-1/2​  

12.857 as a rational number=  3-1/2+5/7÷3/4-1/2×2-1/2​  

Step-by-step explanation:

Given:

3-1/2+5/7÷3/4-1/2×2-1/2​

To find:

Simplify the terms

Solution:

We have to simplify the terms. We thus simplify the fractional term into a simple fractional number.

On dividing (1÷y) we get  =y^{-1}, the inverse of y.  

The fractional number gets simplified into a rational number and thus approximated as a whole number.

Applying the BODMAS rule that first division, then multiplication comes addition and subtraction have to be done.

⇒(3-\frac{1}{2}+\frac{5}{7}) ÷(\frac{3}{4}-\frac{1}{2}×2-\frac{1}{2})

⇒(3-\frac{1}{2}+\frac{5}{7})

                 

  (\frac{3}{4}-\frac{1}{2}×2-\frac{1}{2})

⇒(\frac{6}{2}-\frac{1}{2}+\frac{5}{7})

               

   (\frac{3}{4}-\frac{1}{2}×2-\frac{1}{2})

⇒(\frac{5}{2}+\frac{5}{7})

           

(\frac{3}{4}-1-\frac{1}{2})

⇒  (\frac{5}{2}+\frac{5}{7})        

               

     (\frac{3}{4}-\frac{2}{2}-\frac{1}{2})

\frac{35}{14}+\frac{10}{14}

             

 ( \frac{3}{4}-\frac{1}{2})

\frac{45}{14}

         

 ( \frac{3}{4}-\frac{2}{4})

On transfer of  \frac{1}{4} which is the inverse of term y when dividing the term, On applying this format can be,  

⇒  \frac{45}{14}

           

     \frac{1}{4}

\frac{45}{14}×4

\frac{90}{7}

Thus we get the simple fractional number as  \frac{90}{7}.

\frac{90}{7} =12.857

On approximate the value 12.857, we get 13, a whole number

13

Thus we get the simple fractional number of 12.857.

Hence,

On simplification we get,

  3-1/2+5/7÷3/4-1/2×2-1/2​  =  \frac{90}{7} a fractional number.

  3-1/2+5/7÷3/4-1/2×2-1/2​  = 12.857 as a rational number.

Similar questions