Math, asked by adarshimandarr0, 8 months ago

simplify the question

and send me photos solution
fast it's a challenge

Attachments:

Answers

Answered by Asterinn
2

Answer:

27/125

kindly check the attachment for the stepwise solution and answer.

mark my answer as brainliest please ♥️

Attachments:
Answered by prince5132
9

GIVEN :-

 \mapsto  \sf \:  \dfrac{ \bigg( \dfrac{ - 3}{5}  \bigg) ^{3}  \times  \bigg( \dfrac{9}{25}  \bigg) ^{2}  \times  \bigg( \dfrac{ - 18}{125} \bigg) ^{0}  }{ \dfrac{ - 27}{ 125}  \times  \bigg( \dfrac{ - 3}{5}  \bigg)}

TO FIND :-

 \mapsto  \sf value \: of \:  \dfrac{ \bigg( \dfrac{ - 3}{5}  \bigg) ^{3}  \times  \bigg( \dfrac{9}{25}  \bigg) ^{2}  \times  \bigg( \dfrac{ - 18}{125} \bigg) ^{0}  }{ \dfrac{ - 27}{ 125}  \times  \bigg( \dfrac{ - 3}{5}  \bigg)}

SOLUTION :-

\mapsto  \sf \:  \dfrac{ \bigg( \dfrac{ - 3}{5}  \bigg) ^{3}  \times  \bigg( \dfrac{9}{25}  \bigg) ^{2}  \times  \bigg( \dfrac{ - 18}{125} \bigg) ^{0}  }{ \dfrac{ - 27}{ 125}  \times  \bigg( \dfrac{ - 3}{5}  \bigg)} \\

By using identity:- x = 1.

 \\ \mapsto  \sf \:  \dfrac{ \bigg( \dfrac{ - 3}{5}  \bigg) ^{3}  \times  \bigg( \dfrac{9}{25}  \bigg) ^{2}  \times  1 }{ \dfrac{ - 27}{ 125}  \times  \bigg( \dfrac{ - 3}{5}  \bigg)}  \\  \\  \\ \mapsto  \sf \:  \dfrac{ \bigg( \dfrac{ - 3}{5}  \bigg) ^{3}  \times  \bigg( \dfrac{9}{25}  \bigg) ^{2} }{ \dfrac{ - 27}{ 125}  \times  \bigg( \dfrac{ - 3}{5}  \bigg)}  \\  \\  \\ \mapsto  \sf \:  \dfrac{ \bigg( \dfrac{ - 3}{5}  \bigg) ^{3}  \times  \bigg( \dfrac{3}{5}  \bigg) ^{4}}{  \bigg(\dfrac{ - 3}{ 5 }  \bigg) ^{3}  \times  \bigg( \dfrac{ - 3}{5}  \bigg)} \\

By using identity:- x² ÷ x³ = x² - ³.

 \\ \mapsto  \sf \:  \dfrac{ \bigg( \dfrac{ - 3}{5}  \bigg) ^{3 - 3}  \times  \bigg( \dfrac{3}{5}  \bigg) ^{4}}{ \bigg( \dfrac{ - 3}{5}  \bigg)}  \\  \\  \\  \mapsto  \sf \:  \dfrac{ \bigg( \dfrac{ - 3}{5}  \bigg) ^{0}  \times  \bigg( \dfrac{3}{5}  \bigg) ^{4}}{ \bigg( \dfrac{ - 3}{5}  \bigg)}\\

• By using identity:- x⁰ = 1.

\\ \mapsto  \sf \:  \dfrac{ 1  \times  \bigg( \dfrac{3}{5}  \bigg) ^{4}}{ \bigg( \dfrac{ - 3}{5}  \bigg)}  \\  \\  \\  \mapsto \sf \:  { \dfrac{ \cancel3}{5} \times  \dfrac{3}{5}  \times  \dfrac{3}{5} \times  \dfrac{3}{ \cancel5}  } \times  \dfrac{  \cancel{- 5}}{ \cancel3} \\  \\  \\  \mapsto  \underline{\boxed{ \red{ \sf \:  \frac{ - 27}{125} }}}

Hence the required answer is -27/125.

ADDITIONAL INFORMATION :-

\boxed{\begin{minipage}{7cm} \\ \sf{ $  \implies \bf \sqrt[n]{ \sqrt[m]{ \sqrt[p]{((a^{x} )^{y}) ^{z}  } } }  = (a ^{xyz} )^{ \frac{1}{mnp} }  = a ^{ \frac{xyz}{mnp} }$} \\ \\ \sf{ $ \implies a^m \times a^n = a^{m+n}$} \\  \\  \sf{$ \implies {a}^{m} \times b^m = ab^m $} \\  \\ \sf{$ \implies \dfrac{a^m}{a^n} = a^{m - n} ( \tt{ If  \: m  > n} ) $} \\  \\ \sf{$ \implies \dfrac{a^m}{ a^n} = \dfrac{ 1}{ a^{n-m} } ( \tt{ If  \: n > m )}$} \\  \\ \sf{$ \implies (a^m)^n = a^{mn}$ } \\  \\ \sf{$ \implies a^{-n} = \dfrac{1}{ a^n}$}\end{minipage}}

Similar questions