Math, asked by coctests999, 5 months ago

Simplify the rational expression:
1/(x(x+a))+1/(x(x-a))

Answers

Answered by ExElegant
2

Solution :-

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \rm{\dfrac{1}{x(x + a)} \: \: + \: \: \dfrac{1}{x(x - a)}}

\: \rm{\dfrac{(x - a)}{(x - a)} \: \dfrac{1}{x(x + a)} \: + \: \dfrac{(x + a)}{(x + a)} \: \dfrac{1}{x(x - a)}}

\: \: \: \rm{\dfrac{(x - a)}{x(x - a)(x + a)} \: + \: \dfrac{(x + a)}{x(x - a)(x + a)}}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \rm{\dfrac{(x - \cancel{a}) \: + \: (x + \cancel{a})}{x(x - a)(x + a)}}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:  \rm{\dfrac{2\cancel{x}}{\cancel{x}(x - a)(x + a)}}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:  \rm{\dfrac{2}{(x - a)(x + a)}}

as we know -

\: \: \: \: \: \: \rm{\orange{\rm{(a - b)(a + b) \: \: = \: \: (a^{2} \: - \: b^{2})}}}

\: \: \: \: On applying this property

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \rm{\boxed{\pink{\rm{\dfrac{2}{(x^{2} \: - a^{2})}}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions