Math, asked by neelkanth88100, 3 months ago

simplify this............​

Attachments:

Answers

Answered by Anonymous
5

Step-by-step explanation:

2^15×7^3/ 2^9×7

8=2^3 ; 8^3=( 2^3)^3=2^9

2^15-9 × 7^3-1

2^6 × 7^2

64 × 49

3136

Answered by Anonymous
3

\tt\huge \underline{\underline{ANSWER}}

‎ ‎ ‎ ‎ ‎ ‎

‎ ‎ ‎ ‎ ‎ ‎

\sf \LARGE :\implies\frac{(2 {}^{5}) {}^{3}  \times 7 {}^{3}  }{ {8}^{3} \times 7 }

  \sf \LARGE :  \implies\frac{2 {}^{15}  \times 7 {}^{3}  }{ {(2 {}^{3} )}^{3} \times 7 }

  \sf \LARGE :  \implies\frac{2 {}^{15}  \times 7 {}^{3}  }{ {2}^{9} \times 7 }

 \sf \LARGE :  \implies2 {}^{15 - 9}  \times 7 {}^{3 - 1}

 \sf  \LARGE :  \implies \: 64  \times 49

\LARGE \boxed{\purple{\sf:  \implies 3136}}

Power of exponents:

\begin{gathered}\boxed{\begin{minipage}{5 cm}\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{minipage}}\end{gathered}

NOTE-Kindly see this answer on web to see rules of exponents.

Similar questions