simplify this 8 question
Answers
Answer:
hello ansh
(Sin P/2 + Cos P/2)2 = Sin2 P/2 + Cos2 P/2 +2Sin P/2Cos P/2
= 1 + sinP
Sin P/2 + Cos P/2 = ± √ (1 + sin P)
If P = 30° so P/2 = 30/2 =15°
Putting this value in the above equation:
Sin 15° + Cos 15° = ±√ (1 + sin 30) …(1)
Also, (Sin P/2 – Cos P/2)2 = Sin2 P/2 + Cos2 P/2 – 2Sin P/2Cos P/2
= 1 – sinP
Sin P/2 – Cos P/2 = ± √(1 – sin P)
Putting this value in the above equation:
Sin 15° – Cos 15° = ±√(1 – sin 30°) …(2)
As seen, sin 15° > 0 and cos 15° > 0
hence, sin 15° + cos 15° > 0
From (1) we will get,
sin 15° + cos 15° = √(1 + sin 30°) …(3)
Also, sin 15° – cos 15° = √2 (1/√2 sin 15˚ – 1/√2 cos 15˚)
or, sin 15° – cos 15° = √2 (cos 45° sin 15˚ – sin 45° cos 15°)
or, sin 15° – cos 15° = √2 sin (15˚ – 45˚)
or, sin 15° – cos 15° = √2 sin (- 30˚)
or, sin 15° – cos 15° = -√2 sin 30°
or, sin 15° – cos 15° = -√2 x 1/2
or, sin 15° – cos 15° = – √2/2
So, sin 15° – cos 15° < 0
Now we got, from (2) sin 15° – cos 15°= -√(1 – sin 30°) … (4)
Adding eq. (3) and (4) we get,
2 sin 15° = √(1 + ½) – √(1 – ½)
2 sin 15° = (√3−1)/√2
∴ sin 15° = (√3−1)/2√2