Math, asked by newbie58, 7 months ago

Simplify this please.
I will mark BRAINLIEST.​

Attachments:

Answers

Answered by rogueninja108
1

Answer:

Step-by-step explanation:

Attachments:
Answered by Asterinn
5

 {( \dfrac{3 {p}^{2}q {r}^{ - 2}  }{2 {p}^{ - 1}  {q}^{3} } )}^{2}  \:  \div  {(2 {p}^{3} r)}^{ - 1}

now we know that :-

 \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

 {( \dfrac{3 {p}^{2 - ( - 1)} {q}^{1 - 3}  {r}^{ - 2}  }{2 } ) }^{2} \:  \div  {(2 {p}^{3} r)}^{ - 1}

 {( \dfrac{3 {p}^{2  + 1} {q}^{ - 2}  {r}^{ - 2}  }{2 } )}^{2}  \:  \div  {(2 {p}^{3} r)}^{ - 1}

 {( \dfrac{3 {p}^{3} {q}^{ - 2}  {r}^{ - 2}  }{2 } )}^{2}  \:  \div  {(2 {p}^{3} r)}^{ - 1}

Now we know that :-

 {a}^{ - m}  =  \frac{1}{ {a}^{m} }

 {( \dfrac{3 {p}^{3}    }{2{q}^{  2}  {r}^{  2}} )}^{2}  \:  \div  \dfrac{1}{ {(2 {p}^{3} r)}^{  1} }

( \dfrac{9{p}^{6}    }{4{q}^{  4}  {r}^{  4}} ) \:   \times   {(2 {p}^{3} r)}

9/2 {(p}^{6+ 3})  {(r}^{1 - 4})  ({q}^{ - 4} )

9/2 {(p}^{9})  {(r}^{ - 3})  ({q}^{ - 4} )

Answer :-

(9/2) {(p}^{9})  {(r}^{ - 3})  ({q}^{ - 4} )

___________________________

CONCEPT :-

1)a^m \times a^n= {a}^{(m + n)}

2) {( {a}^{m})}^{n}   =  {a}^{mn}

3) {ab}^{n}  =  {a}^{n}  {b}^{n}

4) \frac{ {(a)}^{m} }{ {(a)}^{n} } = {a}^{m - n}

5) {a}^{ - b}  =  \frac{1}{ {a}^{b} }

_______________________

Similar questions