Math, asked by deepesh4079, 10 months ago

simplify
this question

Attachments:

Answers

Answered by bhuwansinghdhek1975
3

Answer:

this is the answer of the question.

give me the lot of the questions which we can do.

Attachments:
Answered by tahseen619
1

Answer:

0

Step-by-step explanation:

First we will rationalize the denominator of all term then we will follow up the question...

Solution:

 \frac{2}{ \sqrt{5} +  \sqrt{3}  }  +  \frac{1}{ \sqrt{3} +  \sqrt{2}  }  -  \frac{3}{ \sqrt{5} +  \sqrt{2}  }  \\  \\  \frac{2( \sqrt{5} -  \sqrt{3} ) }{( \sqrt{5} +  \sqrt{3} )( \sqrt{5} -  \sqrt{3} )  }  +  \frac{( \sqrt{3 }  -  \sqrt{2}) }{( \sqrt{3} +  \sqrt{2}  )( \sqrt{3} -  \sqrt{2} ) }  -  \frac{3( \sqrt{5} -  \sqrt{2})  }{( \sqrt{5}  +  \sqrt{2})( \sqrt{5} -  \sqrt{2}  ) }  \\  \\  \frac{ 2(\sqrt{5}  -  \sqrt{3} )}{ (\sqrt{ {5}})^{2}  -  { (\sqrt{3} )}^{2} }  +  \frac{ \sqrt{3} -  \sqrt{2}  }{ { \sqrt{(3}) }^{2}  -  {( \sqrt{2}) }^{2} }  -  \frac{3( \sqrt{5} -  \sqrt{2})  }{ { (\sqrt{5} )}^{2} -  { )\sqrt{2} )}^{2}  }  \\  \\ \frac{ 2(\sqrt{5}  -  \sqrt{3} )}{ 5  -  3}  +  \frac{ \sqrt{3} -  \sqrt{2}  }{ { 3}  -  2 }  -  \frac{3( \sqrt{5} -  \sqrt{2})  }{ { 5 -  2}  }  \\  \\ \frac{ 2(\sqrt{5}  -  \sqrt{3} )}{ 2  }  +  \frac{ \sqrt{3} -  \sqrt{2}  }{ 1 }  -  \frac{3( \sqrt{5} -  \sqrt{2})  }{ { 3}  } \\  \\  \sqrt{5}  -  \sqrt{3}  +  \sqrt{3}  -  \sqrt{2}  - ( \sqrt{5}  -  \sqrt{2} ) \\  \\

Hence, the required answer is 0 .

Similar questions