simplify.this question
Attachments:
Answers
Answered by
1
Answer:
We use the fact that if a+b+c = 0, then a^3+b^3+c^3 = 3 abc
(a^2 - b^2)+( b^2-c^2)+ (c^2-a^2)= 0
also (a-b)+(b-c)+(c-a)=0
we assume that a not equal to b not equal to c
Hence,
(a^2-b^2)^3+ (b^2-c^2)^3+ (c^2-a^2)^3 ÷ (a-b)^3 +(b-c)^3 +(c-a)^3
=3(a^2-b^2) (b^2-c^2) (c^2-a^2) / [3 (a-b) (b-c) (c-a)]
= (a+b) (b+c) (c+a)
So, a^2-b^2 = (a+b) (a-b)
Hope this helped you
Similar questions