Math, asked by debdasroy786p92692, 10 months ago

simplify this
4 \sqrt{81}  - 8 \sqrt[3]{216}  + 15 \sqrt[5]{32}  +  \sqrt{225}
please solve this​

Answers

Answered by warylucknow
0

The value of the expression 4\sqrt{81}-8\sqrt[3]{216}+15\sqrt[5]{32}+\sqrt{225} is 33.

Step-by-step explanation:

The expression is:

4\sqrt{81}-8\sqrt[3]{216}+15\sqrt[5]{32}+\sqrt{225}

Solve the expression as follows:

4\sqrt{81}-8\sqrt[3]{216}+15\sqrt[5]{32}+\sqrt{225}\\=[4\times (81)^{1/2}]-[8\times (216)^{1/3}]+[15\times (32)^{1/5}]+[(225)^{1/2}]

=[4\times (9^{2})^{1/2}]-[8\times (6^{3})^{1/3}]+[15\times (2^{5})^{1/5}]+[(15^{2})^{1/2}]

=[4\times (9^{2\times {1/2}}]-[8\times (6^{3\times 1/3}]+[15\times (2^{5\times 1/5}]+[(15^{2\times 1/2}]

=[4\times 9]-[8\times 6]+[15\times 2]+[15]

=36-48+30+15\\=33

Thus, the value of the expression 4\sqrt{81}-8\sqrt[3]{216}+15\sqrt[5]{32}+\sqrt{225} is 33.

Learn more:

https://brainly.in/question/9804584

Similar questions