Math, asked by sarthik21, 1 year ago

simplify (under root 5 -2)2​


AbhijithPrakash: Is it square??
sarthik21: yes

Answers

Answered by AbhijithPrakash
10

Answer:

\left(\sqrt{5}-2\right)^2=9-4\sqrt{5}\quad \left(\mathrm{Decimal:\quad }\:0.05573\dots \right)

Step-by-step explanation:

\left(\sqrt{5}-2\right)^2

\mathrm{Apply\:Perfect\:Square\:Formula}:\quad \left(a-b\right)^2=a^2-2ab+b^2 a=\sqrt{5},\:\:b=2

=\left(\sqrt{5}\right)^2-2\sqrt{5}\cdot \:2+2^2

\mathrm{Simplify}\:\left(\sqrt{5}\right)^2-2\sqrt{5}\cdot \:2+2^2

\left(\sqrt{5}\right)^2-2\sqrt{5}\cdot \:2+2^2

\left(\sqrt{5}\right)^2

\sqrt{a}=a^{\frac{1}{2}}

=\left(5^{\frac{1}{2}}\right)^2

\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^{bc}

=5^{\frac{1}{2}\cdot \:2}

\frac{1}{2}\cdot \:2=1

=5

2\sqrt{5}\cdot \:2=4\sqrt{5}

2^2=4

=5-4\sqrt{5}+4

\mathrm{Add\:the\:numbers:}\:5+4=9

=9-4\sqrt{5}

Answered by TheCommando
27

 \mathfrak{\red{\underline{\underline{Question}}}}

Simplify:

 {(\sqrt{5} - 2)}^{2}

 \mathfrak{\red{\underline{\underline{Answer}}}}

 \boxed{ 9 - 4\sqrt{5}}

 \mathfrak{\red{\underline{\underline{Step\: by\: Step\: Solution}}}}

 {(\sqrt{5} - 2)}^{2}

Here,

 a = \sqrt{5} \\ b = 2

We know,

 \boxed{{(a - b)}^{2} = a^{2} + b^{2} - 2ab}

 {(\sqrt{5} + 2)}^{2}

 = {(\sqrt{5})}^{2} + {(2)}^{2} - 2(\sqrt{5})(2)

 = 5 + 4 - 4\sqrt{5}

 = 9 - 4\sqrt{5}

Therefore, \bold{{(\sqrt{5} - 2)}^{2} = 9 - 4\sqrt{5}}


Anonymous: great answer mam :)
Similar questions