Math, asked by TanishKushwaha, 11 months ago

simplify under root a square minus b square + a upon under root a square + b square + b divided by under root a square + b square minus b Upon A minus under root a square + b square​

Answers

Answered by MaheswariS
59

Answer:

\frac{-b^2}{a^2}

Step-by-step explanation:

Formula used:

(a+b)(a-b)=a^2-b^2

\frac{\sqrt{a^2+b^2}+a}{\sqrt{a^2+b^2}+b} divided by \frac{\sqrt{a^2+b^2}-b}{a-\sqrt{a^2+b^2}}

=\frac{a+\sqrt{a^2+b^2}}{\sqrt{a^2+b^2}+b}*\frac{a-\sqrt{a^2+b^2}}{\sqrt{a^2+b^2}-b}

=\frac{a^2-(\sqrt{a^2+b^2})^2}{(\sqrt{a^2+b^2})^2-b^2}

=\frac{a^2-(a^2+b^2)}{a^2+b^2-b^2}

=\frac{a^2-a^2-b^2}{a^2+b^2-b^2}

=\frac{-b^2}{a^2}

Answered by amitnrw
6

Given :  \dfrac{\sqrt{A+B} +\sqrt{A-B}}{\sqrt{A+B} -\sqrt{A-B}}

To Find : Simplify

Solution :

\dfrac{\sqrt{A+B} +\sqrt{A-B}}{\sqrt{A+B} -\sqrt{A-B}}

Rationalize

\dfrac{\sqrt{A+B} +\sqrt{A-B}}{\sqrt{A+B} -\sqrt{A-B}} \times \dfrac{\sqrt{A+B} +\sqrt{A-B}}{\sqrt{A+B} +\sqrt{A-B}}

use identity

(x + y)² = x²  + y² + 2xy

(x + y)(x - y) = x² - y²

(√x)² = x  

={ (A + B) + (A - B) + 2√(A² - B²) } / {A + B - (A - B) }

= {2A + 2√(A² - B²) } / 2B

=   { A +  √(A² - B²) } /  B

= \dfrac{A +\sqrt{A^2-B^2}}{B}

\dfrac{\sqrt{A+B} +\sqrt{A-B}}{\sqrt{A+B} -\sqrt{A-B}} = \dfrac{A +\sqrt{A^2-B^2}}{B}

Learn More:

simplify 6-4√3|/6+4√3 by rationalizing the denominator - Brainly.in

https://brainly.in/question/3963591

simplify √√30+√21/√30-√21​ - Brainly.in

https://brainly.in/question/25878266

Similar questions