Math, asked by poojaishere, 5 months ago

Simplify using identities


a)(X+1/3)(x-1/2)
b) (6x-7)(6x+7)
c)(3a²-2b²)
pls answer and show calculations
I will mark brainliest​

Answers

Answered by swagat87
0

Step-by-step explanation:

\begin{gathered} \tt \: \frac{1}{1 + {x}^{b - a} + {x}^{c - a} } + \frac{1}{1 + {x}^{a - b} + {x}^{c - b} } + \frac{1}{1 + {x}^{b - c} {x}^{a - c} } \\ \\ \\ \\ : \implies \: \tt \: \frac{ {x}^{a} }{ {x}^{a} \bigg(1 + {x}^{b - a} + {x}^{c - a} \bigg) } + \frac{ {x}^{b} }{ {x}^{b} \bigg(1 + {x}^{a - b} + {x}^{c - b} \bigg)} + \frac{ {x}^{c} }{ {x}^{c} \bigg( 1 + {x}^{b - c} + {x}^{a - c} \bigg) } \\ \\ \\ \\ : \implies \tt \frac{ {x}^{a} }{ {x}^{a} + {x}^{b} + {x}^{c} } + \frac{ {x}^{b} }{ {x}^{b} + {x}^{a} + {x}^{c} } + \frac{ {x}^{c} }{ {x}^{c} + {x}^{b} + {x}^{a} } \\ \\ \\ \\ : \implies \tt \bigg(\frac{ \cancel{{x}^{a} + {x}^{b} + {x}^{c}} }{ \cancel{ {x}^{a} + {x}^{b} + {x}^{c} } } \bigg) \\ \\ \\ \\ \bf \: \large : \implies \large \: {\tt 1 \: \: \: \: \bf \bigg [\:Proved\: \bigg]}\end{gathered}

Similar questions