Math, asked by Somyasiddhi36, 2 months ago

Simplify Using laws of Exponents.
No spams please ​

Attachments:

Answers

Answered by Anonymous
5

Required Solution:-

:\implies\tt\dfrac{3^{-4}\times15^{-3}\times 625}{3^{-7}\times6^{-2}}

:\implies\tt\dfrac{3^{-4}\times(5\times 3)^{-3}\times 625}{3^{-7}\times6^{-2}}

\bf As\: we\; know\: that\: (ab)^{-2}=a^{-2}\times b^{-2} \:where\;a=3\:b=5

So,

:\implies\tt\dfrac{3^{-4}\times3^{-3}\times 5^{-3}\times 625}{3^{-7}\times6^{-2}}

:\implies\tt\dfrac{3^{-4}\times3^{-3}\times 5^{-3}\times 5^4}{3^{-7}\times(3\times 2)^{-2}}

\bf As\: we\; know\: that\: (ab)^{-2}=a^{-2}\times b^{-2} \:where\;a=3\:b=2

So,

:\implies\tt\dfrac{3^{-4}\times3^{-3}\times 5^{-3}\times 5^4}{3^{-7}\times3^{-2}\times 2^{-2}}

\bf Now\:we\: know\: that\:a^x\times a^y=a^{(x+y)}

So,

:\implies\tt\dfrac{3^{-4+(-3)}\times  5^{4+(-3)}}{3^{-7+(-2)}\times2^{-2}}

:\implies\tt\dfrac{3^{-7}\times  5^{1}}{3^{-9}\times2^{-2}}

\bf Now\;we\: know\; a^y\div a^x=a^{y-x}

So,

:\implies\tt\dfrac{3^{-7-(-9)}\times  5}{2^{-2}}

:\implies\tt\dfrac{3^{(-7+9)}\times  5}{2^{-2}}

:\implies\tt\dfrac{3^2\times  5}{2^{-2}}

Transporting \bf 2^{-2}\:from\:Dn.\:to\:Nr.\:will\:make\:its\: power\:+ve

:\implies\tt3^2\times  5\times 2^2

Now simplifying it:

:\implies\tt(9\times2)  \times(5\times 2)

:\implies\tt(18)  \times(10)

\Large\boxed{:\implies\tt 180}

So the final answer is 180.

Laws of exponents:

\boxed{\begin{array}{l}\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{array}}

If not rendering properly on app kindly see this answer at https://brainly.in/question/36888378 through any browser.

Similar questions