Math, asked by shikhamoniborah51, 1 month ago

simplify using laws of exponents.
please with step by step explaination.
please answer quickly​

Attachments:

Answers

Answered by MrImpeccable
49

ANSWER:

To Simplify:

  • (8^(x+1) × 8^3)/(8^(x+2))

Solution:

We are given that,

\implies\dfrac{8^{x+1}\times8^3}{8^{x+2}}

We know that,

\hookrightarrow a^m\times a^n=a^{m+n}

So,

\implies\dfrac{8^{x+1}\times8^3}{8^{x+2}}

\implies\dfrac{8^{x+1+3}}{8^{x+2}}

\implies\dfrac{8^{x+4}}{8^{x+2}}

We know that,

\hookrightarrow \dfrac{a^m}{a^n}=a^{m-n}

So,

\implies\dfrac{8^{x+4}}{8^{x+2}}

\implies8^{x+4-(x+2)}

\implies8^{x+4-x-2}

\implies8^{2}

\implies8\times8

\implies\bf \dfrac{8^{x+1}\times8^3}{8^{x+2}}= 64

Learn More:

 \begin{gathered}\boxed{\begin{minipage}{5 cm}\bf{\dag}\:\:\underline{\text{Laws of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{minipage}}\end{gathered}

Answered by AllenGPhilip
1

Answer:

REFER THE PHOTO UPLOADED

Step-by-step explanation:

Attachments:
Similar questions