Math, asked by dishakeprate, 11 months ago

Simplify using suitable identity
(3x-5y-4)(9x²+16+15xy-20y+12x)

Answers

Answered by dipakchandrabharali
3

Answer:

(3x-5y-4)(9x^2+16+15xy-20y+12x)

={3x+(-5y)+(-4)}{(3x)^2+(-5y)^2+(-4)^2+2.3x.(-5y)+2.(-5y).(-4)+2.(-4).3x}

={3x+(-5y)+(-4)}^2

={3x+(-5y)+(-4)}{3x+(-5y)+(-4)}

Answered by Anirban26
6

Answer:

Putting the value of 3x=a, (-5y)=b and (-4)=c

(3x-5y-4) (9x²+25y²+15xy+12x-20y+16)

=(3x-5y-4) (9x²+25y²+16+15xy-20y+12x)

={(3x)+(-5y)+(-4)}{(3x)²+(-5y)²+(-4)²-(3x)-(-5y)-(-5y)(-4)-(-4)(3x)

=(a+b+c)(a²+b²+c²+ab-bc+ca)

=a³+b³+c³-3abc

=(3a)²m³+(-5y)³+(-4)³-3×(3x)(-5y)(-4)

=27x³-125y³-64-180xy

Step-by-step explanation:

Hope this helps you.

Similar questions