Simplify using suitable identity
(3x-5y-4)(9x²+16+15xy-20y+12x)
Answers
Answered by
3
Answer:
(3x-5y-4)(9x^2+16+15xy-20y+12x)
={3x+(-5y)+(-4)}{(3x)^2+(-5y)^2+(-4)^2+2.3x.(-5y)+2.(-5y).(-4)+2.(-4).3x}
={3x+(-5y)+(-4)}^2
={3x+(-5y)+(-4)}{3x+(-5y)+(-4)}
Answered by
6
Answer:
Putting the value of 3x=a, (-5y)=b and (-4)=c
(3x-5y-4) (9x²+25y²+15xy+12x-20y+16)
=(3x-5y-4) (9x²+25y²+16+15xy-20y+12x)
={(3x)+(-5y)+(-4)}{(3x)²+(-5y)²+(-4)²-(3x)-(-5y)-(-5y)(-4)-(-4)(3x)
=(a+b+c)(a²+b²+c²+ab-bc+ca)
=a³+b³+c³-3abc
=(3a)²m³+(-5y)³+(-4)³-3×(3x)(-5y)(-4)
=27x³-125y³-64-180xy
Step-by-step explanation:
Hope this helps you.
Similar questions