Math, asked by harichandanchinmayee, 2 months ago

simplify with positive exponents: [(9/11)-³×(9/11)power is -7] ÷(9/11)-³​

Answers

Answered by SachinGupta01
52

\bf \underline{ \underline{\maltese\:Solution } }

 \sf  \implies \bigg[ \bigg( \dfrac{9}{11} \bigg)^{ - 3}   \times \bigg( \dfrac{9}{11} \bigg)^{ - 7} \bigg]  \div \bigg( \dfrac{9}{11} \bigg)^{ - 3} \bigg]

 \sf  \implies \bigg(  \dfrac{9}{11} \bigg)^{ - 3 + ( - 7)}    \div \bigg( \dfrac{11}{9} \bigg)^{ 3}

 \sf  \implies \bigg(  \dfrac{9}{11} \bigg)^{  - 10}    \div \bigg( \dfrac{11}{9} \bigg)^{ 3}

 \sf  \implies \bigg(  \dfrac{11}{9} \bigg)^{10}    \div \bigg( \dfrac{11}{9} \bigg)^{ 3}

 \sf  \implies \bigg(  \dfrac{11}{9} \bigg)^{10}     \times  \bigg( \dfrac{9}{11} \bigg)^{ 3}

 \sf  \implies\dfrac{(11) ^{10} }{(9)^{10} }  \times   \dfrac{(9)^{3} }{(11)^{3} }

 \sf  \implies\dfrac{11^{7} \times  \cancel{11^{3}}  }{9^{7} \times  \cancel{9^{3}}  }  \times   \dfrac{ \cancel{9^{3}} }{ \cancel{11^{3} } }

 \sf  \implies \dfrac{11^{7}  }{9^{7}} =  \bigg( \dfrac{11}{9}  \bigg)^{7}

  \boxed{ \bf   \red{ Answer =  \bigg( \dfrac{11}{9}  \bigg)^{7} }}

━━━━━━━━━━━━━━━━━━━━━━━━━━

\bf \underline{ \underline{\maltese\:Laws \: of \: exponents } }

\sf \: \bf{ 1^{st} \: Law} = \bigg( \dfrac{m}{n} \bigg)^{a} \times \bigg( \dfrac{m}{n} \bigg)^{b} = \bigg( \dfrac{m}{n} \bigg)^{a + b}

\sf \bf{2^{nd} \: Law} =

\sf Case : (i) \: if \: a > b \: then, \bigg( \dfrac{m}{n}\bigg) ^{a} \div \bigg( \dfrac{m}{n}\bigg)^{b} = \bigg( \dfrac{m}{n}\bigg)^{a - b}

\sf Case : (ii) \: if \: a < b \: then, \bigg( \dfrac{m}{n}\bigg) ^{a} \div \bigg( \dfrac{m}{n}\bigg)^{b} = \dfrac{1}{\bigg( \dfrac{m}{n}\bigg)^{b - a}}

\sf \: \bf{3^{rd} \: Law }= \bigg\{ \bigg( \dfrac{m}{n} \bigg)^{a} \bigg\}^{b} = \bigg( \dfrac{m}{n} \bigg)^{a \times b} =\bigg( \dfrac{m}{n} \bigg)^{ab}

\sf \: \bf{4^{th} \: Law }= \bigg( \dfrac{m}{n} \bigg)^{ - 1} = \bigg( \dfrac{n}{m} \bigg) =\dfrac{n}{m}

\sf \: \bf{5^{th} \: Law }= \bigg( \dfrac{m}{n} \bigg)^{0} = 1

Similar questions