Math, asked by jenifersima4250, 1 year ago

Simplify without use of Log tables 8log2- 2log4/log2

Answers

Answered by abhimanyu2003106
3

8log2-2log4/log2

log2^8-log4^2/log2

log256-log16/log2

log(25/16)/log2

50/16

Answered by pinquancaro
13

Answer:

\frac{8\log 2-2\log 4}{\log 2}=4

Step-by-step explanation:

Given : Expression \frac{8\log 2-2\log 4}{\log 2}

To find : Simplify the expression without using log tables ?

Solution :

Expression \frac{8\log 2-2\log 4}{\log 2}

Applying logarithmic identity, a\log b=\log b^a

=\frac{\log 2^8-\log 4^2}{\log 2}

=\frac{\log 256-\log 16}{\log 2}

Applying logarithmic identity, \log a-\log b=\log (\frac{a}{b})

=\frac{\log (\frac{256}{16})}{\log 2}

=\frac{\log (16)}{\log 2}

Applying logarithmic identity, \frac{\log_x a}{\log_x b}=\log_b a

=\log_2 (16)

=\log_2 (2)^4

Applying logarithmic identity, \log_a (a)^x=x

=4

Therefore, \frac{8\log 2-2\log 4}{\log 2}=4

Similar questions