Math, asked by evamanoj10, 5 days ago

Simplify
[x^(1/3)-x^(-1/3)]*[x^(2/3)+1+x^(-2/3)]

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given expression is

 \bigg[{\bigg(x\bigg) }^{\dfrac{1}{3} } - {\bigg(x\bigg) }^{ - \dfrac{1}{3} }\bigg]\bigg[{\bigg(x\bigg) }^{\dfrac{2}{3} } + 1 + {\bigg(x\bigg) }^{ - \dfrac{2}{3} }\bigg] \\

can be rewritten as

\rm \:  = \bigg[{\bigg(x\bigg) }^{\dfrac{1}{3} } - {\bigg(x\bigg) }^{ - \dfrac{1}{3} }\bigg]\bigg[{\bigg(x\bigg) }^{\dfrac{2}{3} } +{\bigg(x\bigg) }^{\dfrac{1}{3} }{\bigg(x\bigg) }^{ - \dfrac{1}{3} } + {\bigg(x\bigg) }^{ - \dfrac{2}{3} }\bigg] \\

Let we assume that

\rm \: {\bigg(x\bigg) }^{\dfrac{1}{3} } = a \\

and

\rm \: {\bigg(x\bigg) }^{ - \dfrac{1}{3} } = b\\

So, above expression can be rewritten as

\rm \:  =  \: (a - b)( {a}^{2} + ab +  {b}^{2}) \\

\rm \:  =  \:  {a}^{3} -  {b}^{3}  \\

\rm \:  =  \: {\bigg(x\bigg) }^{\dfrac{1}{3}  \times 3}  - {\bigg(x\bigg) }^{ - \dfrac{1}{3}  \times 3} \\

\rm \:  =  \: x -  {x}^{ - 1}  \\

\rm \:  =  \: x - \dfrac{1}{x} \\

Hence,

 \bigg[{\bigg(x\bigg) }^{\dfrac{1}{3} } - {\bigg(x\bigg) }^{ - \dfrac{1}{3} }\bigg]\bigg[{\bigg(x\bigg) }^{\dfrac{2}{3} } + 1 + {\bigg(x\bigg) }^{ - \dfrac{2}{3} }\bigg] \\ \\   \bf \:  =  \: x - \dfrac{1}{x}

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions