Math, asked by adityasahu25jun2007, 1 month ago

Simplify

(x^-1 y^-1)/(x^-1 + y^-1)

Answers

Answered by MrImpeccable
77

ANSWER:

To Simplify:

  • (x^-1 y^-1)/(x^-1 + y^-1)

Solution:

We are given that,

\implies\rm{\dfrac{x^{-1}y^{-1}}{x^{-1}+y^{-1}}}

We know that,

\hookrightarrow\rm{a^m\times b^m=(a\times b)^m}

So,

\implies\rm{\dfrac{x^{-1}y^{-1}}{x^{-1}+y^{-1}}}

\implies\rm{\dfrac{(xy)^{-1}}{x^{-1}+y^{-1}}}

We know that,

\hookrightarrow\rm{a^{-1}=\dfrac{1}{a}}

So,

\implies\rm{\dfrac{(xy)^{-1}}{x^{-1}+y^{-1}}}

\implies\rm{\dfrac{\dfrac{1}{xy}}{\dfrac{1}{x}+\dfrac{1}{y}}}

Taking LCM in denominator,

\implies\rm{\dfrac{\dfrac{1}{xy}}{\dfrac{1}{x}+\dfrac{1}{y}}}

\implies\rm{\dfrac{\dfrac{1}{xy}}{\dfrac{x+y}{xy}}}

Cancelling xy,

\implies\rm{\dfrac{1}{x+y}}

So,

\implies\bf{(x+y)^{-1}}

Similar questions