Math, asked by samridhi336, 8 months ago

simplify : √-x/16+√-x/25-√-x/36 where 'x' is positive real no.

Answers

Answered by MaheswariS
9

\textbf{To simplify:}

\sqrt{\dfrac{-x}{16}}+\sqrt{\dfrac{-x}{25}}+\sqrt{\dfrac{-x}{36}}

\textbf{Solution:}

\textbf{We know that the value of the imaginary unit $\bf\,i=\sqrt{-1}$}

\text{Consider,}

\sqrt{\dfrac{-x}{16}}+\sqrt{\dfrac{-x}{25}}+\sqrt{\dfrac{-x}{36}}

=\sqrt{\dfrac{x\,i^2}{16}}+\sqrt{\dfrac{x\,i^2}{25}}+\sqrt{\dfrac{x\,i^2}{36}}

=\dfrac{\sqrt{x}\,i}{4}+\dfrac{\sqrt{x}\,i}{5}+\dfrac{\sqrt{x}\,i}{6}

=\dfrac{15\sqrt{x}\,i+12\sqrt{x}\,i+10\sqrt{x}\,i}{60}

=\dfrac{37\sqrt{x}\,i}{60}

\therefore\bf\sqrt{\dfrac{-x}{16}}+\sqrt{\dfrac{-x}{25}}+\sqrt{\dfrac{-x}{36}}=\dfrac{37\sqrt{x}\,i}{60}

Answered by sonia5315
3

Answer:

........ hope it helps

Attachments:
Similar questions