Math, asked by wwwroshanlal12355, 27 days ago

simplify (x+2) (x+4)​

Answers

Answered by Anonymous
144

Answer:

\sf{{x}^{2} + 6x + 8}

Step-by-step explanation:

 \sf{(x + 2)(x + 4)}

\sf{by \: using \: the \: identity \:  {\boxed{\sf(x + a)(x + b)}}}

\sf{and \: (x + a)(x + b) =  {x}^{2} + (a + b) \times x + a \times b}

\sf{a = 2} \\  \sf{b = 4}

 \sf{(x + 2)(x + 4) =  {x}^{2} + (2 + 4) \times x + 2 \times 4}

\sf{=  {x}^{2} + (6) \times x + 8}

\sf{ =  {x}^{2} + 6x + 8}

\sf{\therefore \: the \: value \: of \: \boxed{\sf(x + 2)(x + 4) =  {x}^{2} + 6x + 8}}

 \bf{\pink{\underline{Be \: happy}}}

Answered by souhardya51
3

Answer:

Answer:

\sf{{x}^{2} + 6x + 8}x

2

+6x+8

Step-by-step explanation:

\sf{(x + 2)(x + 4)}(x+2)(x+4)

\sf{by \: using \: the \: identity \: {\boxed{\sf(x + a)(x + b)}}}byusingtheidentity

(x+a)(x+b)

\sf{and \: (x + a)(x + b) = {x}^{2} + (a + b) \times x + a \times b}and(x+a)(x+b)=x

2

+(a+b)×x+a×b

\begin{gathered}\sf{a = 2} \\ \sf{b = 4}\end{gathered}

a=2

b=4

\sf{(x + 2)(x + 4) = {x}^{2} + (2 + 4) \times x + 2 \times 4}(x+2)(x+4)=x

2

+(2+4)×x+2×4

\sf{= {x}^{2} + (6) \times x + 8}=x

2

+(6)×x+8

\sf{ = {x}^{2} + 6x + 8}=x

2

+6x+8

Step-by-step explanation:

Hope it helps you

Please mark me as the brainliest I need it

Similar questions