Simplify x^2+y^2-z^2+2xy/x^2-y^2-z^2-2yz
Answers
answer:
x3 - 2xz2 - xy2 - 2y
————————————————————
x
Step-by-step explanation:
x2-z2+2yz-2xy/x2-y2-2yz-z2
Final result :
x3 - 2xz2 - xy2 - 2y
————————————————————
x
Step by step solution :
Step 1 :
y
Simplify ——
x2
Equation at the end of step 1 :
y
((((((x2)-(z2))+2zy)-(2x•——))-y2)-2zy)-z2
x2
Step 2 :
Rewriting the whole as an Equivalent Fraction :
2.1 Subtracting a fraction from a whole
Rewrite the whole as a fraction using x as the denominator :
x2 - z2 + 2zy (x2 - z2 + 2zy) • x
x2 - z2 + 2zy = ————————————— = ———————————————————
1 x
Equivalent fraction : The fraction thus generated looks different but has the same value as the whole
Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator
Trying to factor a multi variable polynomial :
2.2 Factoring x2 - z2 + 2zy
Try to factor this multi-variable trinomial using trial and error
Factorization fails
Adding fractions that have a common denominator :
2.3 Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
(x2-z2+2zy) • x - (2y) x3 - xz2 + 2xzy - 2y
—————————————————————— = ————————————————————
x x
Equation at the end of step 2 :
(x3 - xz2 + 2xzy - 2y)
((—————————————————————— - y2) - 2zy) - z2
x
Step 3 :
Rewriting the whole as an Equivalent Fraction :
3.1 Subtracting a whole from a fraction
Rewrite the whole as a fraction using x as the denominator :
y2 y2 • x
y2 = —— = ——————
1 x
Checking for a perfect cube :
3.2 x3 - xz2 + 2xzy - 2y is not a perfect cube
Adding fractions that have a common denominator :
3.3 Adding up the two equivalent fractions
(x3-xz2+2xzy-2y) - (y2 • x) x3 - xz2 + 2xzy - xy2 - 2y
——————————————————————————— = ——————————————————————————
x x
Equation at the end of step 3 :
(x3 - xz2 + 2xzy - xy2 - 2y)
(———————————————————————————— - 2zy) - z2
x
Step 4 :
Rewriting the whole as an Equivalent Fraction :
4.1 Subtracting a whole from a fraction
Rewrite the whole as a fraction using x as the denominator :
2zy 2zy • x
2zy = ——— = ———————
1 x
Adding fractions that have a common denominator :
4.2 Adding up the two equivalent fractions
(x3-xz2+2xzy-xy2-2y) - (2zy • x) x3 - xz2 - xy2 - 2y
———————————————————————————————— = ———————————————————
x x
Equation at the end of step 4 :
(x3 - xz2 - xy2 - 2y)
————————————————————— - z2
x
Step 5 :
Rewriting the whole as an Equivalent Fraction :
5.1 Subtracting a whole from a fraction
Rewrite the whole as a fraction using x as the denominator :
z2 z2 • x
z2 = —— = ——————
1 x
Checking for a perfect cube :
5.2 x3 - xz2 - xy2 - 2y is not a perfect cube
Adding fractions that have a common denominator :
5.3 Adding up the two equivalent fractions
(x3-xz2-xy2-2y) - (z2 • x) x3 - 2xz2 - xy2 - 2y
—————————————————————————— = ————————————————————
x x
Checking for a perfect cube :
5.4 x3 - 2xz2 - xy2 - 2y is not a perfect cube
Final result :
x3 - 2xz2 - xy2 - 2y
————————————————————
x