Math, asked by nirmal123415, 1 year ago

simplify x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5

Answers

Answered by Pitymys
2

The given expression is

 x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5=x^5+y^5+5x^4y+5xy^4+10x^3y^2+10x^2y^3\\<br />x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5=x^5+y^5+5xy(x^3+y^3)+10x^2y^2(x+y)\\<br />x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5=(x^3+y^3)(x^2+y^2)-x^2y^2(x+y)+5xy(x^3+y^3)+10x^2y^2(x+y)

 x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5=(x^3+y^3)(x^2+y^2+5xy)+9x^2y^2(x+y)\\<br />x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5=(x+y)(x^2+y^2-xy)(x^2+y^2+5xy)+9x^2y^2(x+y)\\<br />x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5=(x+y)[(x^2+y^2-xy)(x^2+y^2+5xy)+9x^2y^2]

 x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5=(x+y)[(x^2+y^2)^2+4xy(x^2+y^2)+4x^2y^2]\\<br />x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5=(x+y)[(x^2+y^2+2xy)^2]\\<br />x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5=(x+y)[(x+y)^4]\\<br />x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5=(x+y)^5

That is the simplified expression.

Similar questions