Math, asked by abhidha94, 7 months ago

simplify. x+y÷x-y-x-y+4xy÷x^2+y^2-8x^3y÷x^4+y^4​

Attachments:

Answers

Answered by Bidikha
3

Question -

Simplify -

 \frac{x + y}{x - y}  -  \frac{x - y}{x + y}  +  \frac{4xy}{ {x}^{2} +  {y}^{2}   }  -  \frac{8 {x}^{3}y }{ {x}^{4} +  {y}^{4}  }

Solution -

 =  \frac{x + y}{x - y}  -  \frac{x - y}{x + y}  +  \frac{4xy}{ {x}^{2}  +  {y}^{2} }  -  \frac{8x {}^{3}y }{ {x}^{4} +  {y}^{4}  }

 =  \frac{(x + y)(x + y) - (x - y)(x - y)}{(x - y)(x + y)}  +  \frac{4xy}{ {x}^{2} +  {y}^{2}  }  -  \frac{8 {x}^{3} y}{ {x}^{4} +  {y}^{4}  }

 =  \frac{ {(x + y)}^{2} -  {(x - y)}^{2}  }{ {x}^{2} -  {y}^{2}  }  +  \frac{4xy}{ {x}^{2} -  {y}^{2}  }  -  \frac{8 {x}^{3}y }{ {x}^{4}  +  {y}^{4} }

 =  \frac{ {x}^{2} +  {y}^{2} + 2xy - ( {x}^{2}  +  {y}^{2} - 2xy)   }{ {x}^{2}  -  {y}^{2} }  +  \frac{4xy}{ {x}^{2}  +  {y}^{2} }  -  \frac{8 {x}^{3}y }{ {x}^{4}  +  {y}^{4} }

 =  \frac{ {x}^{2} +  {y}^{2} + 2xy -  {x}^{2}  -  {y}^{2}  + 2xy  }{ {x}^{2} -  {y}^{2}  }  +  \frac{4xy}{ {x}^{2} +  {y}^{2}  }  -  \frac{8 {x}^{3}y }{ {x}^{4}  +  {y}^{4} }

 =  \frac{4xy}{ {x}^{2} -  {y}^{2}  }  +  \frac{4xy}{ {x}^{2} +  {y}^{2}  }  -  \frac{8 {x}^{3} y}{ {x}^{4} +  {y}^{4}  }

 =  \frac{4xy( {x}^{2} +  {y}^{2} ) + 4xy( {x}^{2} -  {y}^{2})   }{( {x}^{2}  -  {y}^{2})( {x}^{2}  +  {y}^{2} ) }  -  \frac{8 {x}^{3} y}{ {x}^{4}  +  {y}^{4} }

 =  \frac{4 {x}^{3}y + 4x {y}^{3}  + 4 {x}^{3}y - 4x {y}^{3}   }{ {x}^{4} -  {y}^{4}  }  -  \frac{8 {x}^{3}y }{ {x}^{4} +  {y}^{4}  }

 =  \frac{8 {x}^{3}y }{ {x}^{4} -  {y}^{4}  }  -  \frac{8 {x}^{3}y }{ {x}^{4} -  {y}^{4}  }

 =  \frac{8 {x}^{3} y( {x}^{4} -  {y}^{4}) - 8 {x}^{3}  y( {x}^{4}  -  {y}^{4}  )}{ {x}^{8}  -  {y}^{8} }

 =  \frac{8 {x}^{7} y + 8 {x}^{3} {y}^{5} - 8 {x}^{7}y + 8 {x}^{3} {y}^{5}     }{ {x}^{8} -  {y}^{8}  }

 =  \frac{16 {x}^{3} {y}^{5}  }{ {x}^{8}  -  {y}^{8} }

Similar questions