Math, asked by viswagk8, 1 month ago

simplify (x+y)(x²-xy+y²)
(x-y)(x²+xy+y²
½(x+y+2)[(x-y)²+(y-z)²+z-x)²)]​

Answers

Answered by priyavishwakrma4820
3

PLZ MARK ME AS BRAINLIST

Attachments:
Answered by ItzSameeksha01
84

{\large{\underline{\underline{\pmb{\frak{Answer \: 1 :-}}}}}}

\huge\bold\pink{(x + y)(x² - xy + y²)}

\dashrightarrowx (x² - xy + y²) - y (x² - xy + y²)

\dashrightarrowx³ - x²y + xy² + x²y - xy² + y³

  • - x²y + x²y and - xy² + xy² get cancelled

\longrightarrow x³ + y³

{\large{\underline{\underline{\pmb{\frak{Answer \: 2 :-}}}}}}

\huge\bold\red{(x - y)(x² + xy + y²)}

\dashrightarrowx (x² + xy + y²) - y (x² + xy + y²)

\dashrightarrowx³ + x²y + xy² - x²y - xy² - y³

  • + x²y - x²y and + xy² - xy² get cancelled

\longrightarrow x³ - y³

{\large{\underline{\underline{\pmb{\frak{Answer \: 3 :-}}}}}}

\bold\orange{x³ + y³ + z³ - 3xyz = ½ (x + y + z)[(x - y)² + (y - z)² + (z - x)²]}

\dashrightarrowRHS = \frac{1}{2}(x + y + z)[(x - y)² + (y - z)² + (z - x)²]

\dashrightarrow\frac{1}{2}(x + y + z) (x² + y² - 2xy + y² + z² - 2xy + z² + x² - 2zx)

  • Take 2 common

\dashrightarrow\frac{2}{2} (x + y + z) (x² + y² + z² - xy - yz - zx)

\dashrightarrowx (x² + y² + z² - xy - yz - zx) + y (x² + y² + z² - xy - yz - zx) + z (x² + y² + z² - xy - yz - zx)

\dashrightarrowx³ + xy² + xz² - x²y - xyz - zx² + x²y + y³ + z²y - xy² - y²z - xyz + x²z - zy² + z³ - xyz - yz² - z²x

  • Many terms get cancelled
  • And we left with -
  • x³ + y³ + z³ - xyz - xyz - xyz

\longrightarrow x³ + y³ + z³ - 3xyz

Similar questions