Math, asked by arpnatiwari356, 1 day ago

simplify =( x+y3y)whole cube + (3x+y) whole square​

Answers

Answered by mahakulkarpooja615
0

Answer:

(x+3y^{2})^{3}+(3x+y)^{2} =  x^{3} +27y^{6} +9xy^{2} (x+3y^{2})+9x^{2} +6xy+y^{2}

Step-by-step explanation:

Given : The expression is (x+3y^{2})^{3}+(3x+y)^{2}

To find : The value of given expression.

Solution :

  • The given expression is, (x+3y^{2})^{3}+(3x+y)^{2}
  • We have to simplify the given expression and find out value of the expression.
  • To simplify the expression,we should know two identities,

      (a+b)^{3} =a^{3} +b^{3} +3ab(a+b) and

      (a+b)^{2} = a^{2} +2ab+b^{2}

  • Now, applying these two identities in the given equation, we get

(x+3y^{2})^{3}+(3x+y)^{2} = x^{3} +(3y^{2}) ^{3} +3x*3y^{2} (x+3y^{2})+(3x)^{2} +2*3x*y+y^{2}

                             = x^{3} +27y^{6} +9xy^{2} (x+3y^{2})+9x^{2} +6xy+y^{2}

  • (x+3y^{2})^{3}+(3x+y)^{2} =  x^{3} +27y^{6} +9xy^{2} (x+3y^{2})+9x^{2} +6xy+y^{2}
Similar questions