Math, asked by jaspdhillon78, 7 months ago

Simplify (x2 + x - 1) (x²+ x +1 )​

Answers

Answered by sarahssynergy
4

Given: (x^{2} +x-1) (x^{2} +x+1)

To Find: Simplify the equation.

explanation:

we have,

                 (x^{2} +x-1) (x^{2} +x+1)

we can rearrange it into this,

                  (x^{2} +x+1)(x^{2} +x-1)

By applying the formula,

                   (a+b) (a-b) = a^{2}-b^{2}

Here, we will compare the given equation with the formula and by comparison we will have the values of a and b that will help to simplify the equation.

now,

                    a = x^{2} +x

                    b = 1

putting values of a and b into the formula,

                  (x^{2}+x) ^{2} - (1)^{2}

                  x^{4} +x^{3} +x^{3} +x^{2} -1

                   x^{2} +2x^{3} +x^{2} -1

hence our final product is x^{2} +2x^{3} +x^{2} -1

Answered by amitnrw
6

(x² + x - 1) (x²+ x +1 )​ = x⁴ + 2x³ + x²  - 1

Given:

  • (x² + x - 1) (x²+ x +1 )​

To Find:

  • Simplify the expression:

Solution:

  • (a + b)² = a² + 2ab + b²
  • (a + b)(a - b) = a² - b²
  • (xᵃ)ᵇ = xᵃᵇ
  • xᵃ.xᵇ=xᵃ⁺ᵇ

(x² + x - 1) (x²+ x +1 )​

Step 1:

Use (a - b)(a+ b) = a² - b² where a = x² + x  and b = 1

= (x² + x)² - 1²

Step 2:

Use (a + b)² = a² + 2ab + b²  where a = x²    and b = x  and 1² = 1

= (x²)² + 2(x²)(x) + x²  - 1

Step 3:

Use (x²)² = x⁴  and (x²)(x) = x³    
x⁴ + 2x³ + x²  - 1

Hence, (x² + x - 1) (x²+ x +1 )​ = x⁴ + 2x³ + x²  - 1

Similar questions