Math, asked by Niharikasahu538, 1 year ago

Simplify: (x3-y3)3+(y3-z3)3+(z3-x3) 3 divided by (x-y)3+(y-z)3+(z-x)3

Answers

Answered by Anant02
37

 \frac{ { ({x}^{3} -  {y}^{3})  }^{3} +   {( {y}^{3}  -  {z}^{3} )}^{3}  +  {( {z}^{3}  -  {x}^{3} )}^{3}  }{ {(x - y)}^{3}  + {(y - z)}^{3} +  {(z - x)}^{3}  }  \\  =  \frac{3( {x}^{3} -  {y}^{3})( {y}^{3}  -  {z}^{3})( {z}^{3} -  {x}^{3})}{3(x - y)(y - z)(z - x)}  \\  = (x - y)( {x}^{2}  +  {y}^{2}   +  xy)(y - z)( {y }^{2} +  {z}^{2} + yz)(z - x)( {z}^{2} +  {x}^{2}  + zx) \div (x - y)(y - z)( z- x)   \\  = ( {x}^{2}  +  {y}^{2}   + xy)( {y}^{2}  +  {z}^{2} + yz )( {z}^{2} +  {x}^{2} + x z ) \\ using  \\ if \: a + b + c = 0 \\ then\\  {a}^{3}  +  {b}^{3} +   {c}^{3}  = 3abc \:  \\
Answered by gsgcm2772
0

Step-by-step explanation:

Please mark as brainliest.

Attachments:
Similar questions