Math, asked by gaurikhokiya, 2 months ago

simplify (xb/xc)b+c-a x (xc/xa)c+a-b x (xa xb)a+b-c


pls tell​

Answers

Answered by mathdude500
3

Appropriate Question:

\sf \:Simplify:  {\bigg( \dfrac{ {x}^{b} }{ {x}^{c} } \bigg) }^{b + c - a} \times {\bigg( \dfrac{ {x}^{c} }{ {x}^{a} } \bigg) }^{c + a - b} \times {\bigg( \dfrac{ {x}^{a} }{ {x}^{b} } \bigg) }^{a + b - c} \\

Answer:

\boxed{\bf \:   {\bigg( \dfrac{ {x}^{b} }{ {x}^{c} } \bigg) }^{b + c - a} \times {\bigg( \dfrac{ {x}^{c} }{ {x}^{a} } \bigg) }^{c + a - b} \times {\bigg( \dfrac{ {x}^{a} }{ {x}^{b} } \bigg) }^{a + b - c}  = 1 \: }\\

Step-by-step explanation:

Given expression is

\sf \:  {\bigg( \dfrac{ {x}^{b} }{ {x}^{c} } \bigg) }^{b + c - a} \times {\bigg( \dfrac{ {x}^{c} }{ {x}^{a} } \bigg) }^{c + a - b} \times {\bigg( \dfrac{ {x}^{a} }{ {x}^{b} } \bigg) }^{a + b - c} \\

We know,

\boxed{\sf \:  {x}^{m}   \times  {x}^{n}  \:  =  \:  {x}^{m + n}  \: } \\

So, using this law of exponents, we get

\sf \:  =  \:  {\bigg(  {x}^{b - c} \bigg) }^{b + c - a} \times {\bigg(  {x}^{c - a}  \bigg) }^{c + a - b} \times {\bigg(  {x}^{a - b}  \bigg) }^{a + b - c} \\

We know,

\boxed{\sf \:  {( {x}^{m} )}^{n}  \:  =  \:  {x}^{mn}  \: } \\

So, using this law of exponents, we get

\sf \:  =  \:  {\bigg(x \bigg) }^{(b - c)(b + c - a)} \times {\bigg(x\bigg) }^{(c - a)(c + a - b)} \times {\bigg( x \bigg) }^{(a - b)(a + b - c)} \\

\sf \:  =  \:  {\bigg(x \bigg) }^{(b - c)(b + c - a) + (c - a)(c + a - b) + (a - b)(a + b - c)}  \\

\sf \:  =  \:  {\bigg(x \bigg) }^{ {b}^{2}  -  {c}^{2} - ab + ac  +  {c}^{2} -  {a}^{2}   - bc + ab + {a}^{2} -  {b}^{2}    - ac + bc}  \\

\sf \:  =  \:  {x}^{0}  \\

\sf \:  =  \:  1  \\

Hence,

\implies\boxed{\bf \:   {\bigg( \dfrac{ {x}^{b} }{ {x}^{c} } \bigg) }^{b + c - a} \times {\bigg( \dfrac{ {x}^{c} }{ {x}^{a} } \bigg) }^{c + a - b} \times {\bigg( \dfrac{ {x}^{a} }{ {x}^{b} } \bigg) }^{a + b - c}  = 1 \: }\\

Similar questions