Math, asked by mukkawarag3941, 1 year ago

Simplify




y:1÷{1/2+1/3+1/6÷(3/4-1/3)

Answers

Answered by Erka
1

Answer:

10

Step-by-step explanation:

Step  1  :

           1

Simplify   —

           6

Equation at the end of step  1  :

  1 1     1 1

 (—+—) ÷ (—-—)

  2 3     4 6

Step  2  :

           1

Simplify   —

           4

Equation at the end of step  2  :

  1    1     1    1

 (— +  —) ÷ (— -  —)

  2    3     4    6

Step  3  :

     The left denominator is :       4  

     The right denominator is :       6  

Product of all  

Prime Factors  4 6 12

     Least Common Multiple:  

     12  

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = 3

  Right_M = L.C.M / R_Deno = 2

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.  

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

  L. Mult. • L. Num.       3

  ——————————————————  =   ——

        L.C.M             12

  R. Mult. • R. Num.       2

  ——————————————————  =   ——

        L.C.M             12

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

3 - (2)      1

———————  =  ——

  12        12

Equation at the end of step  3  :

  1    1     1

 (— +  —) ÷ ——

  2    3    12

Step  4  :

           1

Simplify   —

           3

Equation at the end of step  4  :

  1    1     1

 (— +  —) ÷ ——

  2    3    12

Step  5  :

           1

Simplify   —

           2

Equation at the end of step  5  :

  1    1     1

 (— +  —) ÷ ——

  2    3    12

Step  6  :

     The left denominator is :       2  

     The right denominator is :       3  

       Number of times each prime factor

       appears in the factorization of:

Prime  

Factor   Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

2 1 0 1

3 0 1 1

Product of all  

Prime Factors  2 3 6

     Least Common Multiple:  

     6  

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = 3

  Right_M = L.C.M / R_Deno = 2

Making Equivalent Fractions :

6.3      Rewrite the two fractions into equivalent fractions

  L. Mult. • L. Num.      3

  ——————————————————  =   —

        L.C.M             6

  R. Mult. • R. Num.      2

  ——————————————————  =   —

        L.C.M             6

Adding fractions that have a common denominator :

6.4       Adding up the two equivalent fractions  

3 + 2     5

—————  =  —

  6       6

Equation at the end of step  6  :

 5    1

 — ÷ ——

 6   12

Step  7  :

        5       1

Divide  —  by  ——

        6      12  

To divide fractions, write the divison as multiplication by the reciprocal of the divisor :

5      1       5     12

—  ÷  ——   =   —  •  ——

6     12       6     1  

Final result :

 10

HOPE THIS HELPS U

Similar questions