Math, asked by dibyashaktiagroprodu, 5 months ago

simply
(2+√3/2-√3) + (2-√3/2+√3) + (√3-1/√3+1)​

Answers

Answered by Nilesh859
1

Solution : (ʘᴗʘ)

 \red{ \frac{2 +   \sqrt{3}  }{2 -  \sqrt{3} }  +  \frac{2 -  \sqrt{3} }{2 +  \sqrt{3} }  +  \frac{ \sqrt{3} - 1 }{ \sqrt{3} + 1 } }

 \orange{( \frac{2 +   \sqrt{3}  }{2 -  \sqrt{3} } \times  \frac{2 +   \sqrt{3}  }{2 +  \sqrt{3} })   +  (\frac{2 -  \sqrt{3} }{2 +  \sqrt{3} }   \times \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} } ) + ( \frac{ \sqrt{3} - 1 }{ \sqrt{3} + 1 }  +  \frac{ \sqrt{3} - 1 }{ \sqrt{3} + 1 } )}

 \green{ \frac{ {(2)}^{2}  + 2(2)( \sqrt{3} ) +   {(3)}^{2} }{ {(2)}^{2} -   { (\sqrt{3} )}^{2}   } +   \frac{{(2)}^{2}  - 2(2)( \sqrt{3} ) + ( \sqrt{3}) ^{2} }{ {(2)}^{2} - {( \sqrt{3})}^{2}   }  +   \frac{{ (\sqrt{3} )}^{2}   -   2( \sqrt{3} )(1) +  {(1)}^{2} }{ {( \sqrt{3}) }^{2}  -  {(1)}^{2}  }}

 \blue{ (4 + 4 \sqrt{3}   + 3)  + (4  - 4 \sqrt{3}  + 3) +  \frac{3 - 2 \sqrt{3} + 1 }{2} }

 \purple{4 + 4 \sqrt{3}  + 4 - 4 \sqrt{3}   +  2 -  \sqrt{3} }

 \boxed{ \pink { \large{16 -  \sqrt{3} }}}

Hope It May Help You.... (≧▽≦)

Happy Learning... (◠‿・)

Similar questions