Math, asked by tanishbansal2332, 3 months ago

simply:-
81^(-3/4).
explain.

Answers

Answered by priyanshsb2007
6

Step-by-step explanation:

81^(-3/4)

cut 4 from 4

3^4*-3/4

27

Answered by KnowtoGrow
0

Answer:

To find: The value of 81^{\frac{-3}{4} } \\\\

Proof:

Prime factorization of 81:

3|81\\3|27\\3|9\\3|3\\1|1

= 3 X 3 X 3 X 3

= 3^{4}

Putting the value of 81 in 81^{\frac{-3}{4} } \\, we get:

= (3^{4})^{\frac{-3}{4} } \\

= (3)^{4 X {\frac{-3}{4} } \\                                            [ (a^{m})^{n} = a^{m X n}]

= 3^{-3}

= \frac{1}{3^{3} }                                                     [a^{-m} = \frac{1}{a^{m} }]

= \frac{1}{27}

Hence, 81^{\frac{-3}{4} } \\\\ = \frac{1}{27}

Proved.

Hope you got that.

Thank You.

Similar questions