Math, asked by mili36, 2 months ago

Simply fun the following

Attachments:

Answers

Answered by Anonymous
1

Answer:

 \frac{ \sqrt{13} + 3 }{  \sqrt{13}   - 3}  +  \frac{ \sqrt{13}  - 3}{ \sqrt{13} + 3 }

 \frac{ (\sqrt{13}  + 3) {}^{2}  + ( \sqrt{13}  - 3) {}^{2} }{ (\sqrt{13}  - 3)( \sqrt{13} + 3 )}

 \frac{13 + 9 + 6 \sqrt{13 + 13 + 9 - 6 \sqrt{13} } }{( \sqrt{13} ) {}^{2}  - (3) {}^{2} }

 \frac{44}{4}  = 11

 \frac{22 + 22}{13 - 9}

Answered by arpanaial06
1

Answer:

 \frac{ \sqrt{13 } + 3 }{ \sqrt{13}  - 3 }  +  \frac{ \sqrt{13} - 3 }{ \sqrt{13}  + 3}

taking  \:  \: LCM

 \frac{ (\sqrt{13 } + 3)( \sqrt{13}  + 3) + ( \sqrt{13} - 3)( \sqrt{13  }   - 3)} { (\sqrt{13} - 3) ( \sqrt{13} + 3) }

   \frac{13 +  \sqrt[3]{13} +  \sqrt[3]{13} + 9 + 13 -  \sqrt[3]{13  }  -  \sqrt[3]{13}  + 9}{( { \sqrt{13}) }^{2}  - ( {3}^{2} )}

 \frac{13 + 13 + 9 + 9}{13 - 9}

 \frac{44}{4}

11

hope you like it

Similar questions